×

zbMATH — the first resource for mathematics

Beta seasonal autoregressive moving average models. (English) Zbl 07192698
Summary: In this paper, we introduce the class of beta seasonal autoregressive moving average \(( \beta\) SARMA) models for modelling and forecasting time series data that assume values in the standard unit interval. It generalizes the class of beta autoregressive moving average models [A. V. Rocha and the third author, Test 18, No. 3, 529–545 (2009; Zbl 1203.62160)] by incorporating seasonal dynamics to the model dynamic structure. Besides introducing the new class of models, we develop parameter estimation, hypothesis testing inference, and diagnostic analysis tools. We also discuss out-of-sample forecasting. In particular, we provide closed-form expressions for the conditional score vector and for the conditional Fisher information matrix. We also evaluate the finite sample performances of conditional maximum likelihood estimators and white noise tests using Monte Carlo simulations. An empirical application is presented and discussed.
MSC:
62 Statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chuang MD, Yu GH.Order series method for forecasting non-Gaussian time series. J Forecast. 2007;26(4):239-250. doi: 10.1002/for.1024[Crossref], [Web of Science ®], [Google Scholar]
[2] Box G, Jenkins GM, Reinsel G. Time series analysis: forecasting and control. Hoboken: John Wiley & Sons; 2008. [Crossref], [Google Scholar] · Zbl 1154.62062
[3] Tiku ML, Wong WK, Vaughan DC, et al. Time series models in non-normal situations: symmetric innovations. J Time Ser Anal. 2000;21(5):571-596. doi: 10.1111/1467-9892.00199[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0972.62084
[4] Zheng T, Xiao H, Chen R.Generalized ARMA models with martingale difference errors. J Econom. 2015;189(2):492-506. doi: 10.1016/j.jeconom.2015.03.040[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1337.62284
[5] McKenzie Ed.Some simple models for discrete variate time series. J Am Water Resour Assoc. 1985;21(4):645-650. doi: 10.1111/j.1752-1688.1985.tb05379.x[Crossref], [Google Scholar]
[6] Al-Osh MA, Alzaid AA.First-order integer-valued autoregressive (INAR(1)) process. J Time Ser Anal. 1987;8(3):261-275. doi: 10.1111/j.1467-9892.1987.tb00438.x[Crossref], [Google Scholar] · Zbl 0617.62096
[7] Ristić MM, Nastić AS.A mixed INAR(p) model. J Time Ser Anal. 2012;33(6):903-915. doi: 10.1111/j.1467-9892.2012.00806.x[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1281.62205
[8] Zeger SL, Qaqish B.Markov regression models for time series: a quasi-likelihood approach. Biometrics. 1988;44(4):1019-1031. doi: 10.2307/2531732[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0715.62166
[9] Li WK, McLeod AI.ARMA modelling with non-gaussian innovations. J Time Ser Anal. 1988;9(2):155-168. doi: 10.1111/j.1467-9892.1988.tb00461.x[Crossref], [Google Scholar] · Zbl 0637.62079
[10] Janacek GJ, Swift AL.A class of models for non-normal time series. J Time Ser Anal. 1990;11(1):19-31. doi: 10.1111/j.1467-9892.1990.tb00039.x[Crossref], [Google Scholar]
[11] McCullagh P, Nelder J. Generalized linear models. 2nd ed. New York: Chapman and Hall; 1989. [Crossref], [Google Scholar] · Zbl 0744.62098
[12] Li WK.Testing model adequacy for some markov regression models for time series. Biometrika. 1991;78(1):83-89. doi: 10.1093/biomet/78.1.83[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0717.62078
[13] Li WK.Time series models based on generalized linear models: some further results. Biometrics. 1994;50(2):506-511. doi: 10.2307/2533393[Crossref], [PubMed], [Web of Science ®], [Google Scholar] · Zbl 0825.62606
[14] Benjamin MA, Rigby RA, Stasinopoulos DM.Generalized autoregressive moving average models. J Am Stat Assoc. 2003;98(461):214-223. doi: 10.1198/016214503388619238[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1047.62076
[15] Fokianos K, Kedem B.Partial likelihood inference for time series following generalized linear models. J Time Ser Anal. 2004;25(2):173-197. doi: 10.1046/j.0143-9782.2003.00344.x[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1051.62073
[16] Sim CH.Modelling non-normal first-order autoregressive time series. J Forecast. 1994;13(4):369-381. doi: 10.1002/for.3980130403[Crossref], [Google Scholar]
[17] Swift AL.Modeling and forecasting time series with a general non-normal distribution. J Forecast. 1995;14(1):45-66. doi: 10.1002/for.3980140105[Crossref], [Web of Science ®], [Google Scholar]
[18] Akkaya AD, Tiku ML.Time series AR(1) model for short-tailed distributions. Statistics. 2005;39(2):117-132. doi: 10.1080/02331880512331344036[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1067.62091
[19] Jung RC, Kukuk M, Liesenfeld R.Time series of count data: modeling, estimation and diagnostics. Comput Stat Data Anal. 2006;51(4):2350-2364. doi: 10.1016/j.csda.2006.08.001[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1157.62492
[20] Bondon P.Estimation of autoregressive models with epsilon-skew-normal innovations. J Multivar Anal. 2009;100(8):1761-1776. doi: 10.1016/j.jmva.2009.02.006[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1163.62343
[21] Kedem B, Fokianos K. Regression models for time series analysis. Hoboken: John Wiley & Sons; 2002. [Crossref], [Google Scholar] · Zbl 1011.62089
[22] Kumaraswamy P.A generalized probability density function for double-bounded random processes. J Hydrol. 1980;46:79-88. doi: 10.1016/0022-1694(80)90036-0[Crossref], [Web of Science ®], [Google Scholar]
[23] Grunwald GK, Raftery AE, Guttorp P.Time series of continuous proportions. J R Stat Soc Ser B. 1993;55(1):103-116. [Google Scholar] · Zbl 0780.62065
[24] Ferrari SLP, Cribari-Neto F.Beta regression for modelling rates and proportions. J Appl Stat. 2004;31(7):799-815. doi: 10.1080/0266476042000214501[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1121.62367
[25] Johnson N, ‌Kotz S, Balakrishnan N. Continuous univariate distributions. 2nd ed. Hoboken: Wiley; 2014. [Google Scholar] · Zbl 0811.62001
[26] Kieschnick R, McCullough BD.Regression analysis of variates observed on (0, 1): percentages, proportions and fractions. Stat Modelling. 2003;3(3):193-213. doi: 10.1191/1471082X03st053oa[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1070.62056
[27] Melo TFN, Vasconcellos KLP, Lemonte AJ.Some restriction tests in a new class of regression models for proportions. Comput Stat Data Anal. 2009;53(12):3972-3979. doi: 10.1016/j.csda.2009.06.005[Crossref], [Web of Science ®], [Google Scholar] · Zbl 05689152
[28] Gupta AK. International encyclopedia of statistical science. Berlin, Heidelberg: Springer Berlin Heidelberg; 2011. p. 144-145. Chapter Beta Distribution. [Google Scholar]
[29] Guolo A, Varin C.Beta regression for time series analysis of bounded data, with application to canada google flu trends. Ann Appl Stat. 2014;8(1):74-88. doi: 10.1214/13-AOAS684[Crossref], [Web of Science ®], [Google Scholar] · Zbl 06302228
[30] Rocha AV, Cribari-Neto F.Beta autoregressive moving average models. Test. 2009;18(3):529-545. doi: 10.1007/s11749-008-0112-z[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1203.62160
[31] Bonat WH, Ribeiro-Jr PJ, Shimakura SE.Bayesian analysis for a class of beta mixed models. Chil J Stat. 2015;6(1):3-13. [Web of Science ®], [Google Scholar] · Zbl 1449.62057
[32] Casarin R, Dalla Valle L, Leisen F.Bayesian model selection for beta autoregressive processes. Bayesian Anal. 2012;7(2):385-410. doi: 10.1214/12-BA713[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1330.62113
[33] Silva CQ, Migon HS, Correia LT.Dynamic Bayesian beta models. Comput Stat Data Anal. 2011;55(6):2074-2089. doi: 10.1016/j.csda.2010.12.011[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1328.62159
[34] Ferreira G, Figueroa-Zúñiga JI, de Castro M.Partially linear beta regression model with autoregressive errors. Test. 2015;24(4):752-775. doi: 10.1007/s11749-015-0433-7[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1329.62128
[35] Lund R, Basawa IV.Recursive prediction and likelihood evaluation for periodic ARMA models. J Time Ser Anal. 2000;21(1):75-93. doi: 10.1111/1467-9892.00174[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0974.62085
[36] Basawa I, Lund R, Shao Q.First-order seasonal autoregressive processes with periodically varying parameters. Stat Probab Lett. 2004;67(4):299-306. doi: 10.1016/j.spl.2004.02.001[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1041.62071
[37] Monteiro M, Scotto MG, Pereira I.Integer-valued autoregressive processes with periodic structure. J Stat Plan Inference. 2010;140(6):1529-1541. doi: 10.1016/j.jspi.2009.12.015[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1185.62161
[38] Moriña D, Puig P, Ríos J, et al. A statistical model for hospital admissions caused by seasonal diseases. Stat Med. 2011;30(26):3125-3136. doi: 10.1002/sim.4336[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[39] Briët OJT, Amerasinghe PH, Vounatsou P.Generalized seasonal autoregressive integrated moving average models for count data with application to malaria time series with low case numbers. PLoS ONE. 2013;8(6):e65761. doi: 10.1371/journal.pone.0065761[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[40] Bourguignon M, Vasconcellos KL, Reisen VA.A Poisson INAR(1) process with a seasonal structure. J Stat Comput Simul. 2016;86(2):373-387. doi: 10.1080/00949655.2015.1015127[Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[41] Mitchell D, Brockett P, Mendoza-Arriaga R, et al. Modeling and forecasting mortality rates. Insurance. 2013;52(2):275-285. [Google Scholar] · Zbl 1284.91259
[42] Dietz K. The incidence of infectious diseases under the influence of seasonal fluctuations. In: Berger J, Bühler W, Repges R, et al., editors. Mathematical models in medicine. Heidelberg: Springer; 1976. p. 1-15. (Lecture notes in biomathematics; vol. 11). [Google Scholar]
[43] Dowell SF.Seasonal variation in host susceptibility and cycles of certain infectious diseases. Emerging Infect Dis. 2001;7(3):369-374. doi: 10.3201/eid0703.017301[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[44] Grassly NC, Fraser C.Seasonal infectious disease epidemiology. Proc R Soc Lond B. 2006;273(1600):2541-2550. doi: 10.1098/rspb.2006.3604[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[45] Emara KS, Shalaby AE.Seasonal variation of fixed and volatile oil percentage of four eucalyptus spp. related to lamina anatomy. Afr J Plant Sci. 2011;5(6):353-359. [Google Scholar]
[46] Mullen RS. Modeling the temporal and spatial variability of solar radiation [dissertation]. Montana State University; 2012. Doctor in Ecology and Environmental Sciences; Available from: http://scholarworks.montana.edu/xmlui/handle/1/1916[Google Scholar]
[47] Sundar V, Subbiah K.Application of double bounded probability density function for analysis of ocean waves. Ocean Eng. 1989;16(2):193-200. doi: 10.1016/0029-8018(89)90005-X[Crossref], [Web of Science ®], [Google Scholar]
[48] Fletcher SG, Ponnambalam K.Estimation of reservoir yield and storage distribution using moments analysis. J Hydrol (Amst). 1996;182(1-4):259-275. doi: 10.1016/0022-1694(95)02946-X[Crossref], [Web of Science ®], [Google Scholar]
[49] Ganji A, Ponnambalam K, Khalili D, et al. Grain yield reliability analysis with crop water demand uncertainty. Stoch Environ Res Risk Assess. 2006;20(4):259-277. doi: 10.1007/s00477-005-0020-7[Crossref], [Web of Science ®], [Google Scholar]
[50] Andersen BA.Asymptotic properties of conditional maximum-likelihood estimators. J R Stat Soc Ser B. 1970;32(1):283-301. [Google Scholar] · Zbl 0204.51902
[51] Benjamin MA, Rigby RA, Stasinopoulos DM. Fitting non-Gaussian time series models. COMPSTAT Proceedings in Computational Statistics. 1998; Heidelberg: Physica-Verlag. p. 191-196. [Google Scholar] · Zbl 0951.62075
[52] Rocha AV, Cribari-Neto F.Erratum to: beta autoregressive moving average models. Test. 2017;26(2):451-459. doi: 10.1007/s11749-017-0528-4[Crossref], [Web of Science ®], [Google Scholar] · Zbl 06833488
[53] Nocedal J, Wright SJ. Numerical optimization. New York: Springer; 1999. [Crossref], [Google Scholar] · Zbl 0930.65067
[54] Press W, Teukolsky S, Vetterling W. Numerical recipes in C: the art of scientific computing. 2nd ed. Cambridge: Cambridge University Press; 1992. [Google Scholar] · Zbl 0845.65001
[55] Cox DR, Reid N.Parameter orthogonality and approximate conditional inference. J R Stat Soc Ser B. 1987;49(1):1-39. [Google Scholar] · Zbl 0616.62006
[56] Pawitan Y. In all likelihood: statistical modelling and inference using likelihood. Oxford: Oxford Science publications; 2001. [Google Scholar] · Zbl 1013.62001
[57] Davison AC, Hinkley DV. Bootstrap methods and their application. Cambridge: Cambridge University Press; 1997. [Crossref], [Google Scholar] · Zbl 0886.62001
[58] Neyman J, Pearson ES.On the use and interpretation of certain test criteria for purposes of statistical inference. Biometrika. 1928;20A(1/2):175-240. doi: 10.2307/2331945[Crossref], [Google Scholar] · JFM 54.0565.05
[59] Rao CR.Large sample tests of statistical hypotheses concerning several parameters with applications to problems of estimation. Math Proc Cambridge Philos Soc. 1948;44(1):50-57. doi: 10.1017/S0305004100023987[Crossref], [Google Scholar] · Zbl 0034.07503
[60] Wald A.Tests of statistical hypotheses concerning several parameters when the number of observations is large. Trans Amer Math Soc. 1943;54:426-482. doi: 10.1090/S0002-9947-1943-0012401-3[Crossref], [Google Scholar] · Zbl 0063.08120
[61] Terrell GR.The gradient statistic. Comput Sci Stat. 2002;34:206-215. [Google Scholar]
[62] Akaike H.A new look at the statistical model identification. IEEE Trans Automat Contr. 1974;19(6):716-723. doi: 10.1109/TAC.1974.1100705[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0314.62039
[63] Pan W.Bootstrapping likelihood for model selection with small samples. J Comput Graph Stat. 1999;8(4):687-698. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[64] Schwarz G.Estimating the dimension of a model. Ann Statist. 1978;6(2):461-464. doi: 10.1214/aos/1176344136[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0379.62005
[65] Hannan EJ, Quinn BG.The determination of the order of an autoregression. J R Stat Soc Ser B. 1979;41(2):190-195. [Google Scholar] · Zbl 0408.62076
[66] Sugiura N.Further analysts of the data by Akaike’s information criterion and the finite corrections – further analysts of the data by Akaike’s. Comm Statist. 1978;7(1):13-26. doi: 10.1080/03610927808827599[Taylor & Francis Online], [Google Scholar] · Zbl 0382.62060
[67] Hurvich CM, Tsai CL.Regression and time series model selection in small samples. Biometrika. 1989;76(2):297-307. doi: 10.1093/biomet/76.2.297[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0669.62085
[68] McQuarrie AD.A small-sample correction for the Schwarz SIC model selection criterion. Stat Probab Lett. 1999;44(1):79-86. doi: 10.1016/S0167-7152(98)00294-6[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1087.62507
[69] Shao J.Bootstrap model selection. J Am Stat Assoc. 1996;91(434):655-665. doi: 10.1080/01621459.1996.10476934[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0869.62030
[70] Cavanaugh JE.Unifying the derivations for the Akaike and corrected Akaike information criteria. Stat Probab Lett. 1997;33(2):201-208. doi: 10.1016/S0167-7152(96)00128-9[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1130.62302
[71] Ishiguro M, Sakamoto Y, Kitagawa G.Bootstrapping log likelihood and EIC, an extension of AIC. Ann Inst Stat Math. 1997;49(3):411-434. doi: 10.1023/A:1003158526504[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0935.62033
[72] Cavanaugh JE, Shumway RH.A bootstrap variant of AIC for state-space model selection. Statistica Sinica. 1997;7:473-496. [Web of Science ®], [Google Scholar] · Zbl 0926.62077
[73] Shibata R.Bootstrap estimate of Kullback-Leibler information for model selection. Statistica Sinica. 1997;7:375-394. [Web of Science ®], [Google Scholar] · Zbl 0926.62031
[74] Seghouane AK.Asymptotic bootstrap corrections of AIC for linear regression models. Signal Process. 2010;90:217-224. doi: 10.1016/j.sigpro.2009.06.010[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1177.94071
[75] Bayer FM, Cribari-Neto F.Bootstrap-based model selection criteria for beta regressions. Test. 2015;24(4):776-795. doi: 10.1007/s11749-015-0434-6[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1329.62347
[76] Myers RH, Montgomery DC, Vining GG. Generalized linear models with applications in engineering and the sciences. 2nd ed. Hoboken: Wiley; 2010. [Crossref], [Google Scholar] · Zbl 0996.62065
[77] Mauricio JA.Computing and using residuals in time series models. Comput Stat Data Anal. 2008;52(3):1746-1763. doi: 10.1016/j.csda.2007.05.034[Crossref], [Web of Science ®], [Google Scholar] · Zbl 05564600
[78] Espinheira PL, Ferrari SLP, Cribari-Neto F.Influence diagnostics in beta regression. Comput Statist Data Anal. 2008;52:4417-4431. doi: 10.1016/j.csda.2008.02.028[Crossref], [Web of Science ®], [Google Scholar] · Zbl 05565027
[79] Espinheira PL, Ferrari SLP, Cribari-Neto F.On beta regression residuals. J Appl Stat. 2008;35:407-419. doi: 10.1080/02664760701834931[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 1147.62315
[80] Anderson RL.Distribution of the serial correlation coefficient. Ann Math Stat. 1942;13(1):1-13. doi: 10.1214/aoms/1177731638[Crossref], [Google Scholar] · Zbl 0060.30915
[81] Ljung GM, Box GEP.On a measure of lack of fit in time series models. Biometrika. 1978;65(2):297-303. doi: 10.1093/biomet/65.2.297[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0386.62079
[82] Monti AC.A proposal for a residual autocorrelation test in linear models. Biometrika. 1994;81(4):776-780. doi: 10.1093/biomet/81.4.776[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0810.62082
[83] Hyndman RJ, Athanasopoulos G. Forecasting: principles and practice. Melbourne: OTexts; 2013. [Google Scholar]
[84] R Development Core Team. R. A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2016. ISBN 3-900051-07-0 [Google Scholar]
[85] Simas AB, Barreto-Souza W, Rocha AV.Improved estimators for a general class of beta regression models. Comput Statist Data Anal. 2010;2:348-366. doi: 10.1016/j.csda.2009.08.017[Crossref], [Google Scholar] · Zbl 05689594
[86] INMET [www.inmet.gov.br/projetos/rede/pesquisa]; 2018. Banco de Dados Meteorológicos para Ensino e Pesquisa do Instituto Nacional de Meteorologia (INMET), Brazil [Google Scholar]
[87] Tamerius JD, Shaman J, Alonso WJ, et al. Environmental predictors of seasonal influenza epidemics across temperate and tropical climates. PLoS Pathog. 2013;9(3):e1003194. doi: 10.1371/journal.ppat.1003194[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[88] Hyndman R, Koehler AB, Ord JK. Forecasting with exponential smoothing: the state space approach. New York: Springer; 2008. [Crossref], [Google Scholar] · Zbl 1211.62165
[89] Hyndman RJ. Forecast: forecasting functions for time series and linear models. R package version 8.0 ed.; 2017. Available from: http://github.com/robjhyndman/forecast[Google Scholar]
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.