Kaneko, Ikuya The second moment for counting prime geodesics. (English) Zbl 1456.11166 Proc. Japan Acad., Ser. A 96, No. 1, 7-12 (2020). Summary: A brighter light has freshly been shed upon the second moment of the Prime Geodesic Theorem. We work with such moments in the two and three dimensional hyperbolic spaces. Letting \(E_{\Gamma}(X)\) be the error term arising from counting prime geodesics associated to \(\Gamma = \text{PSL}_2(\mathbb{Z}[i])\), the bound \(E_{\Gamma}(X) \ll X^{3/2+\epsilon}\) is proved in a square mean sense. Our second moment bound is the pure counterpart of the work of A. Balog et al. [J. Number Theory 198, 239–249 (2019; Zbl 1461.11082)] for \(\Gamma = \text{PSL}_2(\mathbb{Z})\), and the main innovation entails the delicate analysis of sums of Kloosterman sums. We also infer pointwise bounds from the standpoint of the second moment. Finally, we announce the pointwise bound \(E_{\Gamma}(X) \ll X^{67/42+\varepsilon}\) for \(\Gamma = \text{PSL}_2(\mathbb{Z}[i])\) by an application of the Weyl-type subconvexity. Cited in 2 Documents MSC: 11M36 Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas) 11F72 Spectral theory; trace formulas (e.g., that of Selberg) 11L05 Gauss and Kloosterman sums; generalizations 11M26 Nonreal zeros of \(\zeta (s)\) and \(L(s, \chi)\); Riemann and other hypotheses Keywords:prime geodesic theorem; \(L\)-functions; subconvexity; spectral summation formulæ; Kloosterman sums; exponential sums Citations:Zbl 1461.11082 × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] O. Balkanova, D. Chatzakos, G. Cherubini, D. Frolenkov and N. Laaksonen, Prime geodesic theorem in the 3-dimensional hyperbolic space, Trans. Amer. Math. Soc. 372 (2019), no. 8, 5355-5374. · Zbl 1479.11085 · doi:10.1090/tran/7720 [2] O. Balkanova and D. Frolenkov, Bounds for a spectral exponential sum, J. Lond. Math. Soc. (2) 99 (2019), no. 2, 249-272. · Zbl 1456.11092 · doi:10.1112/jlms.12174 [3] O. Balkanova and D. Frolenkov, Sums of Kloosterman sums in the prime geodesic theorem, Q. J. Math. 70 (2019), no. 2, 649-674. · Zbl 1456.11144 · doi:10.1093/qmath/hay060 [4] A. Balog, A. Biró, G. Cherubini, and N. Laaksonen, Bykovskii-type theorem for the Picard manifold, arXiv:1911.01800. · Zbl 1492.11130 [5] A. Balog, A. Biró, G. Harcos and P. Maga, The prime geodesic theorem in square mean, J. Number Theory 198 (2019), 239-249. · Zbl 1461.11082 · doi:10.1016/j.jnt.2018.10.012 [6] V. A. Bykovskiĭ, Density theorems and the mean value of arithmetical functions in short intervals (Russian), Zap. Nauchn. Semin. POMI 212 (1994), 56-70, translation in J. Math. Sci. (N.Y.) 83 (1997), no. 6, 720-730. · Zbl 0871.11061 [7] Y. Cai, Prime geodesic theorem, J. Théor. Nombres Bordeaux 14 (2002), no. 1, 59-72. · Zbl 1028.11030 [8] G. Cherubini and J. Guerreiro, Mean square in the prime geodesic theorem, Algebra Number Theory 12 (2018), no. 3, 571-597. · Zbl 1422.11122 · doi:10.2140/ant.2018.12.571 [9] H. Iwaniec, Prime geodesic theorem, J. Reine Angew. Math. 349 (1984), 136-159. · Zbl 0527.10021 [10] I. Kaneko, The prime geodesic theorem for \(\text{PSL}_2(\mathbf{Z}[i])\) and spectral exponential sum, arXiv:1903.05111. [11] I. Kaneko, Spectral exponential sums on hyperbolic surfaces I, arXiv:1905.00681. · Zbl 1520.11081 [12] I. Kaneko and S. Koyama, Euler products of Selberg zeta functions in the critical strip, arXiv:1809.10140. · Zbl 1512.11066 [13] S. Koyama, Prime geodesic theorem for the Picard manifold under the mean-Lindelöf hypothesis, Forum Math. 13 (2001), no. 6, 781-793. · Zbl 1061.11024 · doi:10.1515/form.2001.034 [14] W. Z. Luo and P. Sarnak, Quantum ergodicity of eigenfunctions on \(\text{PSL}_2(\mathbf{Z})\backslash \mathbf{H}^2 \), Inst. Hautes Études Sci. Publ. Math. 81 (1995), no. 1, 207-237. · Zbl 0852.11024 · doi:10.1007/BF02699377 [15] Y. Motohashi, A trace formula for the Picard group. I, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), no. 8, 183-186. · Zbl 0876.11021 · doi:10.3792/pjaa.72.183 [16] Y. Motohashi, Spectral theory of the Riemann zeta-function, Cambridge Tracts in Mathematics, 127, Cambridge University Press, Cambridge, 1997. · Zbl 0878.11001 [17] Y. Motohashi, Trace formula over the hyperbolic upper half space, in Analytic number theory (Kyoto, 1996), 265-286, London Math. Soc. Lecture Note Ser., 247, Cambridge Univ. Press, Cambridge, 1997. · Zbl 0910.11021 [18] M. Nakasuji, Prime geodesic theorem via the explicit formula of \(\Psi\) for hyperbolic 3-manifolds, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 7, 130-133. · Zbl 1028.11032 · doi:10.3792/pjaa.77.130 [19] P. Nelson, Eisenstein series and the cubic moment for \(PGL_2\), arXiv:1911.06310. [20] P. Sarnak, The arithmetic and geometry of some hyperbolic three-manifolds, Acta Math. 151 (1983), no. 1, 253-295. · Zbl 0527.10022 · doi:10.1007/BF02393209 [21] A. Selberg, Collected papers, Springer Collected Works in Mathematics, vol. 1, Springer-Verlag, Berlin, Heidelberg, 1989. · Zbl 0675.10001 [22] K. Soundararajan and M. P. Young, The prime geodesic theorem, J. Reine Angew. Math. 676 (2013), 105-120. · Zbl 1276.11084 [23] N. Watt, Spectral large sieve inequalities for Hecke congruence subgroups of \(\mathit{SL}(2,\mathbf{Z}[i])\), J. Number Theory 140 (2014), 349-424. · Zbl 1312.11032 · doi:10.1016/j.jnt.2014.01.018 [24] H. Wu, Burgess-like subconvexity for, for \(\text{GL}_1 \), Compos. Math. 155 (2019), no. 8, 1457-1499. · Zbl 1471.11162 · doi:10.1112/S0010437X19007309 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.