×

Local comparisons of homological and homotopical mixed Hodge polynomials. (English) Zbl 1442.32037

According to P. Deligne [Publ. Math., Inst. Hautes Étud. Sci. 40, 5–57 (1971; Zbl 0219.14007)], J. W. Morgan [Publ. Math., Inst. Hautes Étud. Sci. 48, 137–204 (1978; Zbl 0401.14003)] and V. Navarro Aznar [Invent. Math. 90, 11–76 (1987; Zbl 0639.14002)], the rational cohomology and the homotopy Lie algebra of every simply connected algebraic variety \(X\) over \(C\) are endowed with functorial mixed Hodge structures. This means that there exists a finite increasing filtration \(W\) on the \(Q\)-vector spaces \(H_*(X,Q)\) and \(\pi_k(X)\otimes Q\) called the weight filtration and a finite decreasing filtration \(F\) of the \(C\)-vector space \(H_*(X,C)\) and \(\pi_k(X)\otimes C\), called the Hodge filtration, satisfying extra conditions.
In this paper the author assumes that \(\dim k \pi_k(X)\otimes Q<+\infty\) and considers the following mixed Hodge polynomials \[QH_X(t,u,v):=\sum_{k,p,q}\dim\left(Gr^p_{F_*}Gr^{W_\bullet}_{p+q}H_k(X;C)\right)t^ku^{-p}v^{-q}\] and \[QH^\pi_X(t,u,v):=\sum_{k,p,q}\dim\left(Gr^p_{\tilde F_*}Gr^{\tilde W_\bullet}_{p+q}(\pi_k(X)\otimes C)\right)t^ku^{-p}v^{-q}.\]
In this short note the author announces some inequalities between these two mixed Hodge polynomials. The author announces also a joint paper with Libgober including detailed proofs of the results as well as calculations and further information about mixed Hodge polynomials of elliptic spaces.

MSC:

32S35 Mixed Hodge theory of singular varieties (complex-analytic aspects)
55P62 Rational homotopy theory
55Q40 Homotopy groups of spheres
55N99 Homology and cohomology theories in algebraic topology

References:

[1] J. F. de Bobadilla, J. Fresán, V. Muñoz and A. Murillo, The Hilali conjecture for hyperelliptic spaces, in Mathematics without boundaries, Springer, New York, 2014, pp. 21-36. · Zbl 1322.55004
[2] P. Deligne, Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. 40 (1971), 5-57. · Zbl 0219.14007
[3] P. Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. 44 (1974), 5-77. · Zbl 0237.14003
[4] Y. Félix, S. Halperin and J.-C. Thomas, Rational homotopy theory, Graduate Texts in Mathematics, 205, Springer-Verlag, New York, 2001. · Zbl 0961.55002
[5] R. M. Hain, The de Rham homotopy theory of complex algebraic varieties. I, \(K\)-Theory 1 (1987), no. 3, 271-324. · Zbl 0637.55006 · doi:10.1007/BF00533825
[6] R. M. Hain, The de Rham homotopy theory of complex algebraic varieties. II, \(K\)-Theory 1 (1987), no. 5, 481-497. · Zbl 0657.14004 · doi:10.1007/BF00536980
[7] M. R. Hilali, Action du tore Tn sur les espaces simplement connexes, Ph.D. thesis, Universite catholique de Louvain (1980).
[8] M. R. Hilali and M. I. Mamouni, A conjectured lower bound for the cohomological dimension of elliptic spaces, J. Homotopy Relat. Struct. 3 (2008), no. 1, 379-384. · Zbl 1187.55003
[9] M. R. Hilali and M. I. Mamouni, A lower bound of cohomologic dimension for an elliptic space, Topology Appl. 156 (2008), no. 2, 274-283. · Zbl 1161.55003 · doi:10.1016/j.topol.2008.07.011
[10] J. W. Morgan, The algebraic topology of smooth algebraic varieties, Inst. Hautes Études Sci. Publ. Math. 48 (1978), 137-204. · Zbl 0401.14003
[11] V. Navarro-Aznar, Sur la théorie de Hodge-Deligne, Invent. Math. 90 (1987), no. 1, 11-76. · Zbl 0639.14002 · doi:10.1007/BF01389031
[12] C. A. M. Peters and J. H. M. Steenbrink, Mixed Hodge structures, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, 52, Springer-Verlag, Berlin, 2008. · Zbl 1138.14002
[13] S. Yokura, The Hilali conjecture on product of spaces, Tbilisi Math. Journal 12 (2019), no. 4, 123-129. · Zbl 1436.55019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.