×

zbMATH — the first resource for mathematics

An improved AUSM-family scheme with robustness and accuracy for all Mach number flows. (English) Zbl 07193015
Summary: With the increasing popularity of Computational Fluid Dynamics (CFD), the reliability of numerical scheme becomes prominent. The work presents a newly improved scheme more reliable in all Mach number regimes to circumvent some typical symptoms of the previous AUSM-family schemes observed in hypersonic and very low speeds. This scheme is facilitated by reconstructing pressure diffusion term in mass flux, velocity diffusion term in pressure flux and numerical sound speed. Then, a variety of benchmark test cases are selected to systematically assess the effects of these key ingredients and investigate the additional features in terms of robustness and accuracy. The proposed scheme attains stronger shock robustness against carbuncle instability, better low-speed accuracy and higher resolution of oblique shocks compared with many existing upwind schemes. Moreover, it can exactly resolve contact discontinuity, preserve positivity, damp numerical overshoots and avert the global cut-off strategy. Numerical results for a wide spectrum of Mach numbers indicate its potential and reliable application to all Mach number flows.

MSC:
76 Fluid mechanics
74 Mechanics of deformable solids
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Peery, K. M.; Imlay, S. T., (Proceedings of the Blunt Body Flow Simulations (1988), AIAA Paper 88-2924)
[2] Kim, S.; Kim, C.; Rho, O. H.; Hong, S. K., Cures for the shock instability: development of a shock-stable roe scheme, J. Comput. Phys., 185, 342-374 (2003)
[3] Rodionov, A. V., Artificial viscosity in godunov-type schemes to cure the carbuncle phenomenon, J. Comput. Phys., 345, 308-329 (2017)
[4] Liou, M.-S., Mass flux schemes and connection to shock instability, J. Comput. Phys., 160, 623-648 (2000)
[5] Moschetta, J.-M.; Gressier, J.; Robinet, J.-C.; Casalis, G., The carbuncle phenomenon: a genuine Euler instability?, (Toro, E. F., Godunov Methods, Theory and Applications (1995), Kluwer Academic/Plenum Publishers), 639-645
[6] Chen, S.-S.; Yan, C.; Lin, B.-X.; Liu, L.-Y.; Yu, J., Affordable shock-stable item for Godunov-type schemes against carbuncle phenomenon, J. Comput. Phys., 373, 662-672 (2018)
[7] Chen, S.-S.; Yan, C.; Lin, B.-X.; Li, Y.-S., A new robust carbuncle-free roe scheme for strong shock, J. Sci. Comput., 77, 1250-1277 (2018)
[8] Kitamura, K.; Shima, E.; Nakamura, Y.; Roe, P. L., Evaluation of Euler fluxes for hypersonic heating computations, AIAA J., 48, 763-776 (2010)
[9] Quirk, J., A contribution to the great riemann solver debate, Int. J. Numer. Methods Fluids., 18, 555-574 (1994)
[10] Guillard, H.; Viozat, C., On the behaviour of upwind schemes in the low Mach number limit, Comput. Fluids., 28, 63-86 (1999)
[11] Turkel, E., Preconditioning techniques in computational fluid dynamics, Ann. Rev. Fluid Mech., 31, 385-416 (1999)
[12] Weiss, J. M.; Smith, W. A., Preconditioning applied to variable and constant density flows, AIAA J., 33, 2050-2057 (1995)
[13] Choi, Y. H.; Merkle, C. L., The application of preconditioning in viscous flows, J. Comput. Phys., 105, 207-223 (1993)
[14] Fillion, P.; Chanoine, A.; Dellacherie, S.; Kumbaro, A., FLICA-OVAP: a new platform for core thermal-hydraulic studies, Nucl. Eng. Des., 241, 4348-4358 (2011)
[15] Rieper, F., A low-Mach number fix for roe’s approximate Riemann solver, J. Comput. Phys., 230, 5263-5287 (2011)
[16] Chen, S.-S.; Yan, C.; Xiang, X.-H., Effective low-Mach number improvement for upwind schemes, Comput. Math. Appl., 75, 3737-3755 (2018)
[17] Edwards, J. R., (Proceedings of the Towards Unified CFD Simulation of Real Fluid Flows (2001), AIAA Paper 2001-2524)
[18] Liou, M.-S., A sequel to AUSM, part II: AUSM+-up for all speeds, J. Comput. Phys., 214, 137-170 (2006)
[19] Shima, E.; Kitamura, K., Parameter-free simple low-dissipation AUSM-family scheme for all speeds, AIAA J., 49, 1693-1709 (2011)
[20] Roe, P. L., Approximate riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43, 357-372 (1981)
[21] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 25-34 (1994)
[22] Osher, S.; Solomon, F., Upwind difference schemes for hyperbolic systems of conservation laws, Math. Comput., 38, 339-374 (1982)
[23] Yee, H. C., (Proceedings of the Upwind and Symmetric Shock-capturing Schemes (1987), NASA TM-289464)
[24] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 35-61 (1983)
[25] Rusanov, V. V., Calculation of interaction of non-steady shock waves with obstacles, J. Comput. Math. Phys. USSR., 1, 267-279 (1961)
[26] Van Leer, B., Flux-vector splitting for the Euler equation, Lect. Notes Phys., 170, 507-512 (1982)
[27] Steger, J. L.; Warming, R. F., Flux vector splitting of the inviscid gasdynamic equations with applications to finite difference methods, J. Comput. Phys., 40, 263-293 (1981)
[28] Liou, M.-S.; Steen, C. J., A new flux splitting scheme, J. Comput. Phys., 107, 23-39 (1993)
[29] Wada, Y.; Liou, M.-S., An accurate and robust flux splitting scheme for shock and contact discontinuities, SIAM J. Sci. Comput., 18, 633-657 (1997)
[30] Liou, M.-S., A sequal to AUSM: AUSM+, J. Comput. Phys., 129, 364-382 (1996)
[31] Kim, K. H.; Kim, C.; Rho, O. H., Methods for the accurate computations of hypersonic flows I: AUSMPW+ scheme, J. Comput. Phys., 174, 38-80 (2001)
[32] Kitamura, K.; Shima, E., Towards shock-stable and accurate hypersonic heating computations: a new pressure flux for AUSM-family schemes, J. Comput. Phys., 245, 62-83 (2013)
[33] Chakravarthy, K.; Chakraborty, D., Modified SLAU2 scheme with enhanced shock stability, Comput. Fluids., 100, 176-184 (2014)
[34] Matsuyama, S., Performance of all-speed AUSM-family schemes for DNS of low Mach number turbulent channel flow, Comput. Fluids., 91, 130-143 (2014)
[35] Chen, S.-S.; Yan, C.; Lou, S.; Lin, B.-X., An improved entropy-consistent Euler flux in low Mach number, J. Comput. Sci., 27, 271-283 (2018)
[36] Kitamura, K.; Hashimoto, A., Reduced dissipation AUSM-family fluxes: HR-SLAU2 and HR-AUSM+up for high resolution unsteady flow simulations, Comput. Fluids., 126, 41-57 (2016)
[37] Toro, E. F., Riemann Solvers and Numerical Methods For Fluid Dynamics (1997), Springer-Verlag
[38] Yoon, S.; Jameson, A., Lower-upper symmetric-gauss-seidel method for the Euler and Navier-stokes equations, AIAA J., 9, 1025-1026 (1988)
[39] van Albada, G. D.; van Leer, B.; Roberts, W. W., A comparative study of computational methods in cosmic gas dynamics, Astron. Astrophys., 108, 76-84 (1982)
[40] Henderson, J.; Menart, J. A., (Grid study on blunt bodies with the Carbuncle phenomenon (1997), AIAA Paper 97-3904)
[41] Ismail, F.; Roe, P. L., Affordable, entropy-consistent Euler flux functions II: entropy production at shocks, J. Comput. Phys., 228, 5410-5436 (2009)
[42] Einfeldt, B.; Munz, C. D.; Roe, P. L.; Sjogreen, B., On Godunov-type methods near low density, J. Comput. Phys., 92, 273-295 (1991)
[43] Donat, R.; Marquina, A., Capturing shock reflections: an improved flux formula, J. Comput. Phys., 125, 42-58 (1996)
[44] Gresho, P. M.; Chan, S. T., On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. II: implementation, Int. J. Numer. Methods. Fluids., 11, 621-659 (1990)
[45] Lin, B.-X.; Yan, C.; Chen, S.-S., A study on the behaviour of high-order flux reconstruction method with different low-dissipation numerical fluxes for large eddy simulation, Int. J. Comput. Fluid. Dyn., 31, 339-361 (2017)
[46] Hollis, B. R.; Collier, A. S., Turbulent aeroheating testing of mars science laboratory entry vehicle, J. Space. Roc., 45, 417-427 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.