×

zbMATH — the first resource for mathematics

A numerical study on the effect of cavitation erosion in a diesel injector. (English) Zbl 07193075
Summary: The consequences of geometry alterations in a diesel injector caused by cavitation erosion are investigated with numerical simulations. The differences in the results between the nominal design geometry and the eroded one are analyzed for the internal injector flow and spray formation. The flow in the injector is modeled with a three-phase Eulerian approach using a compressible pressure-based multiphase flow solver. Cavitation is simulated with a nonequilibrium mass transfer rate model based on the simplified form of the Rayleigh-Plesset equation. Slip velocity between the liquid-vapor mixture and air is included in the model by solving two separate momentum conservation equations. The eroded injector is found to result in a loss in the rate of injection but also lower cavitation volume fraction inside the nozzle. The injected sprays are then simulated with a Lagrangian method considering as initial conditions the predicted flow characteristics at the exit of the nozzle. The results obtained show wider spray dispersion for the eroded injector and shorter spray tip penetration.
MSC:
76-XX Fluid mechanics
80-XX Classical thermodynamics, heat transfer
Software:
AVL
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Van Basshuysen, R.; Schäfer, F., Internal combustion engine handbook—basics, components, Systems and Perspectives, 345 (2004), SAE
[2] Bosch, Electronic Automotive Handbook (2007), John Wiley & Sons
[3] Egler, W.; Giersch, R. J.; Boecking, F.; Hammer, J.; Hlousek, J.; Mattes, P., Fuel injection systems, (Mollenhauer, K.; Tschoeke, H., Handbook of Diesel Engines (2010), Springer-Verlag Berlin Heidelberg)
[4] https://doi.org/10.1016/j.wear.2006.01.020.
[5] Ann Arbor, Michigan, USA.
[6] https://doi.org/10.1007/s00193-008-0185-3. · Zbl 1255.76067
[7] Skoda, R.; Iben, U.; Mozorov, A.; Mihatsch, M.; Schmidt, S. J.; Adams, N. A., Numerical simulation of collapse induced shock dynamics for the prediction of the geometry, pressure and temperature impact on the cavitation erosion in micro channels, Proceedings of the WIMRC, Third International Cavitation Forum (2011), University of Warwick
[8] Singapore, https://doi.org/10.1016/j.compfluid.2011.11.003.
[9] http://doi:10.1088/1755-1315/15/2/022013.
[10] https://doi.org/10.1016/j.wear.2014.12.048.
[11] https://doi.org/10.1063/1.4932175.
[12] https://doi.org/10.1016/S1001-6058(15)60519-4.
[13] https://doi.org/10.1177/1468087417708137.
[14] https://doi.org/10.1016/j.compfluid.2018.06.025. · Zbl 1410.76441
[15] https://doi.org/10.1063/1.5092711.
[16] Washington, D.C., USA.
[17] Manchester, UK.
[18] Indianapolis, Indiana, USA.
[19] Roth, H.; Giannadakis, E.; Gavaises, M.; Arcoumanis, C.; Omae, K.; Sakata, I., Effect of multi-injection strategy on cavitation development in diesel injector nozzle holes, SAE Trans. J. Engines, 114, 3, 1029-1045 (2005)
[20] https://doi.org/10.1615/AtomizSpr.v19.i3.30.
[21] https://doi.org/10.1063/1.3372174. · Zbl 1188.76128
[22] Mitroglou, N.; Gavaises, M., Cavitation inside real-size fully transparent fuel injector nozzles and its effect on near-nozzle spray formation, Proceedings of the DIPSI Workshop on Droplet Impact Phenomena and Spray Investigations (2011), University of Bergamo: University of Bergamo Italy
[23] https://doi.org/10.1016/j.ijmultiphaseflow.2014.09.008.
[24] https://doi.org/10.1063/1.4891325.
[25] https://doi.org/10.1016/j.fuel.2016.02.037.
[26] https://doi.org/10.1017/jfm.2017.156.
[27] Valencia, Spain, https://doi.org/10.4995/ILASS2017.2017.4629.
[28] https://doi.org/10.1115/1.861851.
[29] https://doi.org/10.4271/2006-01-1114.
[30] https://doi.org/10.1017/S0022112008002668. · Zbl 1175.76002
[31] https://doi.org/10.1007/s38313-018-0089-2.
[32] https://doi.org/10.1016/j.fuel.2018.02.144.
[33] Edelbauer, W.; Strucl, J.; Morozov, A., Large eddy simulation of cavitating throttle flow, SimHydro: Modelling of Rapid Transitory Flows, Sophia Antipolis, F (2014)
[34] https://doi.org/10.1103/PhysRevFluids.4.021601.
[35] Schmidt, S. J.; Mihatsch, M.; Thalhamer, M.; Adams, N. A., Assessment of the prediction capability of a thermodynamic cavitation model for the collapse characteristics of a vapor-bubble cloud, Proceedings of the WIMRC, Third International Cavitation Forum (2011), University of Warwick
[36] Schenke, S.; van Terwisga, T. J.C., Simulating compressibility in cavitating flows with an incompressible mass transfer flow solver, Proceedings of the Fifth International Symposium on Marine Propulsors, Espoo, Finland, 71-79 (2017)
[37] Patankar, S. V.; Spalding, D. B., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transf., 15, 10, 1787-1806 (1972) · Zbl 0246.76080
[38] https://doi.org/10.1080/14786440808635681. · JFM 46.1274.01
[39] Plesset, M. S., The dynamics of cavitation bubbles, ANSME J. Appl. Mech., 16, 228-231 (1949)
[40] Wood, A. B., A Textbook of Sound: Being an Account of the Physics of Vibrations with Special Reference to Recent Theoretical and Technical Developments (1930), Macmillan · JFM 56.0717.07
[41] Kobayashi, H., The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow, Phys. Fluids, 17, 045104 (2005) · Zbl 1187.76279
[42] Schiller, L.; Naumann, A. Z., Über die grundlegenden Berechnungen bei der Schwerkraftaufbereitung, Z. Ver. Deut. Ing., 77, 318-321 (1933)
[43] https://doi.org/10.1017/CBO9780511618604.
[44] Schmidt, S. J.; Mihatsch, M.; Thalhamer, M.; Adams, N. A., Assessment of Erosion Sensitive Areas via Compressible Simulation of Unsteady Cavitating Flows, 106 (2014), Springer Science & Business Media
[45] https://doi.org/10.1002/fld.1650080602. · Zbl 0668.76118
[46] Sweby, P. K., High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal., 21, 5, 995-1011 (1984) · Zbl 0565.65048
[47] Software user manual (2018), AVL FIRE™
[48] https://doi.org/10.1115/1.1914803.
[49] Mandumpala Devassy, B.; Edelbauer, W.; Greif, D., Study of cavitation and 3D needle movement due to erosion in fuel injection nozzles using coupled simulation tools, Proceedings of the Eighteenth Annual Conference on Liquid Atomization and Spray Systems (2016), ILASS-Asia: ILASS-Asia Chennai, India
[50] https://doi.org/10.1016/0045-7825(74)90029-2. · Zbl 0277.76049
[51] Tatschl, R.; von Künsberg, S. C.; Alajbegović, A.; Winklhofer, E., Diesel spray break-up modeling including multidimensional cavitating nozzle flow effects, Darmstadt, Germany, ILASS-Europe (2000)
[52] Abramzon, B.; Sirignano, W. A., Droplet vaporization model for spray combustion calculations, Int. J. Heat Mass Transf., 32, 9, 1605-1618 (1989)
[53] https://doi.org/10.4271/930072.
[54] https://doi.org/10.1017/S0022112004002812. · Zbl 1065.76116
[55] https://doi.org/10.1051/proc:2007016. · Zbl 1206.76034
[56] Basara, B., An eddy viscosity transport model based on elliptic relaxation approach, AIAA J., 44, 1686-1690 (2006)
[57] Capri, Italy, https://doi.org/10.4271/2011-24-0004.
[58] Franc, J. P.; Michel, J. M., Fundamentals of Cavitation; vol. 76 (2005), Springer Science & Business Media
[59] Shah, R. K.; Bhatti, M. S., Laminar convective heat transfer in ducts, Handbook of Single-Phase Convective Heat Transfer, 3 (1987), Wiley: Wiley New York
[60] https://doi.org/10.1016/j.enconman.2012.03.032.
[61] https://doi.org/10.1016/j.icheatmasstransfer.2015.04.009.
[62] https://doi.org/10.1016/j.fuel.2016.02.040.
[63] https://doi.org/10.1016/j.fuel.2016.10.041.
[64] https://doi.org/10.1016/j.cam.2016.04.010. · Zbl 1371.76149
[65] https://doi.org/10.4271/2010-01-2106.
[66] https://doi.org/10.1615/AtomizSpr.2013006309.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.