×

zbMATH — the first resource for mathematics

Robust topology optimization for multi-material structures under interval uncertainty. (English) Zbl 07193096
Summary: In this paper, we propose an efficient method to design robust multi-material structures under interval loading uncertainty. The objective of this study is to minimize the structural compliance of linear elastic structures. First, the loading uncertainty can be decomposed into two unit forces in the horizontal and vertical directions based on the orthogonal decomposition, which separates the uncertainty into the calculation coefficients of structural compliance that are not related to the finite element analysis. In this manner, the time-consuming procedure, namely, the nested double-loop optimization, can be avoided. Second, the uncertainty problem can be transformed into an augmented deterministic problem by means of uniform sampling, which exploits the coefficients related to interval variables. Finally, an efficient sensitivity analysis method is explicitly developed. Thus, the robust topology optimization (RTO) problem considering interval uncertainty can be solved by combining orthogonal decomposition with uniform sampling (ODUS). In order to eliminate the influence of numerical units when comparing the optimal results to deterministic and RTO solutions, the relative uncertainty related to interval objective function is employed to characterize the structural robustness. Several multi-material structure optimization cases are provided to demonstrate the feasibility and efficiency of the proposed method, where the magnitude uncertainty, directional uncertainty, and combined uncertainty are investigated.
MSC:
74 Mechanics of deformable solids
90 Operations research, mathematical programming
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Molter, A.; Fonseca, J. S.O.; Fernandez, L. D.S., Simultaneous topology optimization of structure and piezoelectric actuators distribution, Appl. Math. Model. (2016), S0307904X16300117
[2] Gao, J.; Li, H.; Gao, L.; Xiao, M., Topological shape optimization of 3D micro-structured materials using energy-based homogenization method, Adv. Eng. Softw., 116, 89-102 (2018)
[3] Bendsøe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods, and Applications (2003), Springer: Springer Berlin
[4] Huang, X. D.; Xie, Y. M., A further review of ESO type methods for topology optimization, Struct. Multidiscip. Optim., 41, 5, 671-683 (2010)
[5] Bendsøe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 635-654 (1999)
[6] Sigmund, O., A 99 line topology optimization code written in matlab, Struct. Multidiscip. Optim., 21, 2, 120-127 (2001)
[7] Huang, X. D.; Xie, Y. M., Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method, Finite Elem. Anal. Des., 43, 14, 1039-1049 (2007)
[8] Allaire, G.; Jouve, F.; Toader, A. M., Structural optimization using sensitivity analysis and a level- set method, J. Comput. Phys., 194, 1, 363-393 (2004)
[9] Li, H.; Luo, Z.; Gao, L.; Walker, P., Topology optimization for functionally graded cellular composites with metamaterials by level sets, Comput. Methods Appl. Mech. Eng., 328, 340-364 (2018)
[10] Li, H.; Luo, Z.; Xiao, M.; Gao, L.; Gao, J., A new multiscale topology optimization method for multiphase composite structures of frequency response with level sets, Comput. Methods Appl. Mech. Eng., 356, 116-144 (2019)
[11] Zhang, W. S.; Chen, J. S.; Zhu, X. F.; Zhou, J. H.; Xue, D. C.; Lei, X.; Guo, X., Explicit three dimensional topology optimization via moving morphable void (MMV) approach, Comput. Methods Appl. Mech. Eng., 322, 590-614 (2017)
[12] Xia, L.; Xia, Q.; Huang, X. D.; Xie, Y. M., Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review, Arch. Comput. Method Eng., 25, 2, 437-478 (2016)
[13] Xia, L.; Breitkopf, P., Concurrent topology optimization design of material and structure within FE2 nonlinear multiscale analysis framework, Comput. Methods Appl. Mech. Eng., 278, 7, 524-542 (2014)
[14] Da, D. C.; Xia, L.; Li, G. Y.; Huang, X. D., Evolutionary topology optimization of continuum structures with smooth boundary representation, Struct. Multidiscip. Optim., 11, 1-17 (2017)
[15] Huang, X.; Xie, Y. M., Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials, Comput. Mech., 43, 3, 393-401 (2009)
[16] Sigmund, O.; Torquato, S., Design of materials with extreme thermal expansion using a three-phase topology optimization method, J. Mech. Phys. Solids, 45, 1037-1067 (1997)
[17] Wang, Y. Q.; Luo, Z.; Kang, Z.; Zhang, N., A multi-material level set-based topology and shape optimization method, Comput. Methods Appl. Mech. Eng., 283, 1570-1586 (2015)
[18] Luo, Y. J.; Kang, Z., Layout design of reinforced concrete structures using two-material topology optimization with Drucker-Prager yield constraints, Struct. Multidiscip. Optim., 47, 95-110 (2013)
[19] Gao, T.; Zhang, W. H., A mass constraint formulation for structural topology optimization with multiphase materials, Int. J. Numer. Methods Eng., 88, 8, 774-796 (2011)
[20] Zuo, W. J.; Saitou, K., Multi-material topology optimization using ordered SIMP interpolation, Struct. Multidiscip. Optim., 55, 2, 1-15 (2016)
[21] Luo, Z.; Gao, W.; Song, C. M., Design of multi-phase piezoelectric actuators, J. Intell. Mater. Syst. Struct., 21, 18, 1851-1865 (2010)
[22] Zhu, J. H.; Zhang, W. H.; Beckers, P., Integrated layout design of multi-component system, Int. J. Numer. Methods Eng., 78, 6, 631-651 (2010)
[23] Zhou, S. W.; Wang, M., Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition, Struct. Multidiscip. Optim., 33, 2, 89-111 (2007)
[24] Tavakoli, R., Multimaterial topology optimization by volume constrained Allen-Cahn system and regularized projected steepest descent method, Comput. Methods Appl. Mech. Eng., 276, 7, 534-565 (2014)
[25] Tavakoli, R.; Mohseni, S. M., Alternating active-phase algorithm for multi-material topology optimization problems: a 115-line matlab implementation, Struct. Multidiscip. Optim., 49, 4, 621-642 (2014)
[26] Wang, M. Y.; Wang, X., “Color” level sets: a multi-phase method for structural topology optimization with multiple materials, Comput. Methods Appl. Mech. Eng., 193, 6, 469-496 (2004)
[27] Wang, M. Y.; C.hen, S. K.; Wang, X. M.; Mei, Y. L., Design of multimaterial compliant mechanisms using level-set methods, J. Mech. Des., 127, 5, 941-956 (2005)
[28] Guo, X.; Zhang, W. S.; Zhong, W. L., Stress-related topology optimization of continuum structures involving multi-phase materials, Comput. Methods Appl. Mech. Eng., 268, 1, 632-655 (2014)
[29] Chu, S.; Gao, L.; Xiao, M.; Luo, Z.; Li, H., Stress-based multi-material topology optimization of compliant mechanisms, Int. J. Numer. Methods Eng., 113, 7, 1021-1044 (2017)
[30] Da, D. C.; Cui, X. Y.; Long, K.; Li, G. Y., Concurrent topological design of composite structures and the underlying multi-phase materials, Comput. Struct., 179, 1-14 (2017)
[31] Radman, A.; Huang, X. D.; Xie, Y. M., Topological design of microstructures of multi-phase materials for maximum stiffness or thermal conductivity, Comput. Mater. Sci., 91, 91, 266-273 (2014)
[32] Kharmanda, G.; Olhoff, N.; Mohamed, A.; Lemaire, M., Reliability-based topology optimization, Struct. Multidiscip. Optim., 26, 5, 295-307 (2004)
[33] da Silva, G. A.; Beck, A. T., Reliability-based topology optimization of continuum structures subject to local stress constraints, Struct. Multidiscip. Optim., 57, 6, 2339-2355 (2018)
[34] Wang, F. W.; Lazarov, B. S.; Sigmund, O., On Projection methods, Convergence and Robust Formulations in Topology Optimization (2011), Springer-Verlag New York, Inc
[35] Kim, C.; Wang, S.; Hwang, I.; Lee, J., Application of reliability-based topology optimization for microelectro mechanical systems, AIAA J., 45, 12, 2926-2934 (2012)
[36] Luo, Y. J.; Zhou, M. D.; Wang, M. Y.; Deng, Z. C., Reliability based topology optimization for continuum structures with local failure constraints, Comput. Struct., 143, 73-84 (2014)
[37] Jung, H. S.; Cho, S., Reliability-based topology optimization of geometrically nonlinear structures with loading and material uncertainties, Finite Elem. Anal. Des., 41, 3, 311-331 (2005)
[38] Jeong, S. H.; Choi, D. H.; Yoon, G. H., Fatigue and static failure considerations using a topology optimization method, Appl. Math. Model., 39, 3-4, 1137-1162 (2015)
[39] Asadpoure, A.; Tootkaboni, M.; Guest, J. K., Robust topology optimization of structures with uncertainties in stiffness-application to truss structures, Comput. Struct., 89, 11, 1131-1141 (2011)
[40] Sigmund, O., Manufacturing tolerant topology optimization, Acta Mech. Sin., 25, 2, 227-239 (2009)
[41] Guest, J. K.; Igusa, T., Structural optimization under uncertain loads and nodal locations, Comput. Methods Appl. Mech. Eng., 198, 1, 116-124 (2008)
[42] Lazarov, B. S.; Schevenels, M.; Sigmund, O., Topology optimization with geometric uncertainties by perturbation techniques, Int. J. Numer. Methods Eng., 90, 11, 1321-1336 (2012)
[43] Tootkaboni, M.; Asadpoure, A.; Guest, J. K., Topology optimization of continuum structures under uncertainty - A polynomial chaos approach, Comput. Methods Appl. Mech. Eng., 201, 1, 263-275 (2012)
[44] Zhao, J. P.; Wang, C. J., Robust structural topology optimization under random field loading uncertainty, Struct. Multidiscip. Optim., 50, 3, 517-522 (2014)
[45] Knoll, P.; Reich, S., Level set based robust shape and topology optimization under random field uncertainties, Struct. Multidiscip. Optim., 41, 4, 507-524 (2010)
[46] Jansen, M.; Lombaert, G.; Diehl, M.; Lazarov, B. S.; Sigmund, O.; Schevenels, M., Robust topology optimization accounting for misplacement of material, Struct. Multidiscip. Optim., 47, 3, 317-333 (2013)
[47] Zhao, J. P.; Wang, C. J., Robust topology optimization under loading uncertainty based on linear elastic theory and orthogonal diagonalization of symmetric matrices, Comput. Methods Appl. Mech. Eng., 273, 2, 204-218 (2014)
[48] da Silva, G. A.; Cardoso, E. L.; Beck, A. T., Non-probabilistic robust continuum topology optimization with stress constraints, Struct. Multidiscip. Optim., 59, 5, 1181-1197 (2019)
[49] Cardoso, E. L.; da Silva, G. A.; Beck, A. T., Robust topology optimization of compliant mechanisms with uncertainties in output stiffness, Int J Numer Methods Eng., 119, 532-547 (2019)
[50] da Silva, G. A.; Beck, A. T.; Sigmund, O., Topology optimization of compliant mechanisms with stress constraints and manufacturing error robustness, Comput. Methods Appl. Mech. Eng., 354, 397-421 (2019)
[51] Wu, J. L.; Gao, J.; Luo, Z.; Brown, T., Robust topology optimization for structures under interval uncertainty, Adv. Eng. Softw., 99, C, 36-48 (2016)
[52] Kogiso, N.; Ahn, W.; Nishiwaki, S.; Izui, K.; Yoshimura, M., Robust topology optimization for compliant mechanisms considering uncertainty of applied loads, J. Adv. Mech. Des. Syst. Manuf., 2, 1, 96-107 (2008)
[53] Alvarez, F.; Carrasco, M., Minimization of the expected compliance as an alternative approach to multiload truss optimization, Struct. Multidiscip. Optim., 29.6, 470-476 (2005)
[54] Jeong, S. H.; Lee, J. W.; Yoon, G. H.; Choi, D. H., Topology optimization considering the fatigue constraint of variable amplitude load based on the equivalent static load approach, Appl. Math. Model., 56, 626-647 (2018)
[55] Thore, C. J.; Holmberg, E.; Klarbring, A., A general framework for robust topology optimization under load-uncertainty including stress constraints, Comput. Methods Appl. Mech. Eng., 319, 1-18 (2017)
[56] Chu, S.; Xiao, M.; Gao, L.; Li, H.; Zhang, J. H.; Zhang, X. Y., Topology optimization of multi-material structures with graded interfaces, Comput. Methods Appl. Mech. Eng., 346, 1096-1117 (2019)
[57] Li, H.; Luo, Z.; Gao, L.; Qin, Q. H., Topology optimization for concurrent design of structures with multi-patch microstructures by level sets, Comput. Methods Appl. Mech. Eng., 331, 536-561 (2018)
[58] Qiu, Z. P., Comparison of static response of structures using convex models and interval analysis method, Int. J. Numer. Methods Eng., 56, 1735-1753 (2003)
[59] Jaulin, L., Applied Interval Analysis: With Examples in Parameter and State estimation, Robust Control and Robotics (2001), Springer: Springer New York
[60] Zheng, Y. F.; Xiao, M.; Gao, L.; Li, H., Robust topology optimization for periodic structures by combining sensitivity averaging with a semi-analytical method, Int. J. Numer. Methods Eng., 117, 475-497 (2019)
[61] Huang, X. D.; Xie, Y. M., Evolutionary topology optimization of continuum structures including design-dependent self-weight loads, Finite Elem. Anal. Des., 47, 8, 942-948 (2011)
[62] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O., Efficient topology optimization in matlab using 88 lines of code, Struct. Multidiscip. Optim., 43, 1, 1-16 (2011)
[63] Huang, X. D.; Radman, A.; Xie, Y. M., Topological design of microstructures of cellular materials for maximum bulk or shear modulus, Comput. Mater. Sci., 50, 6, 1861-1870 (2011)
[64] Weisheng, Z.; Jie, Y.; Jian, Z.; Xu, G., A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model, Struct. Multidiscip. Optim., 53, 6, 1243-1260 (2016)
[65] Jinhao, Z.; Mi, X.; Liang, G.; Junjian, F., A novel projection outline based active learning method and its combination with Kriging metamodel for hybrid reliability analysis with random and interval variables, Comput. Methods Appl. Mech. Eng., 341, 32-52 (2018)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.