×

Residual-based shock capturing in solids. (English) Zbl 1441.74101

Summary: This paper adapts the concept of residual-based shock-capturing viscosity to the setting of solid mechanics. To evaluate the residual of the momentum balance equation, one requires the divergence of the Cauchy stress. Solid constitutive models used in simulations of extreme events involving shocks typically specify the Cauchy stress in terms of a local rate equation rather than an explicit formula involving the current deformation gradient and/or strain rate; unlike in widely-used models for fluid mechanics, there is usually no closed-form expression for spatial derivatives of the solid Cauchy stress. We therefore investigate the evolution of stress gradients given rate-form models involving various objective rates of Cauchy stress. The rate equations we derive for the stress gradient are then integrated numerically to furnish the stress divergence needed to define the shock viscosity. The properties of this shock viscosity are demonstrated in benchmark problems using Lagrangian isogeometric analysis and an immersed isogeometric-meshfree simulation framework.

MSC:

74J40 Shocks and related discontinuities in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Hughes, T. J.R.; Kato, T.; Marsden, J. E., Well-posed quasi-linear second-order hyperbolic systems with applications to nonlinear elastodynamics and general relativity, Arch. Ration. Mech. Anal., 63, 3, 273-294 (1977) · Zbl 0361.35046
[2] Hughes, T. J.R.; Marsden, J. E., Classical elastodynamics as a linear symmetric hyperbolic system, J. Elasticity, 8, 1, 97-110 (1978) · Zbl 0373.73015
[3] Benson, D. J., Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Engrg., 99, 2, 235-394 (1992) · Zbl 0763.73052
[4] McGlaun, J. M.; Thompson, S. L.; Elrick, M. G., CTH: A three-dimensional shock wave physics code, Int. J. Impact Eng., 10, 1, 351-360 (1990)
[5] Richtmyer, R. D., Proposed Numerical Method for Calculation of ShocksTechnical Report LA-671 (1948), Los Alamos National Laboratory
[6] Scovazzi, G.; Christon, M. A.; Hughes, T. J.R.; Shadid, J. N., Stabilized shock hydrodynamics: I. A Lagrangian method, Comput. Methods Appl. Mech. Engrg., 196, 4, 923-966 (2007) · Zbl 1120.76334
[7] Scovazzi, G., Stabilized shock hydrodynamics: II. Design and physical interpretation of the SUPG operator for Lagrangian computations, Comput. Methods Appl. Mech. Engrg., 196, 4, 967-978 (2007) · Zbl 1120.76332
[8] Scovazzi, G., Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach, J. Comput. Phys., 231, 24, 8029-8069 (2012)
[9] Bazilevs, Y.; Akkerman, I.; Benson, D. J.; Scovazzi, G.; Shashkov, M. J., Isogeometric analysis of Lagrangian hydrodynamics, J. Comput. Phys., 243, 224-243 (2013) · Zbl 1349.76178
[10] Brooks, A. N.; Hughes, T. J.R., Streamline Upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-Stokes equations, Comput. Methods Appl. Mech. Engrg., 32, 199-259 (1982) · Zbl 0497.76041
[11] Hughes, T. J.R.; Mallet, M., A new finite element formulation for computational fluid dynamics: IV. a discontinuity-capturing operator for multidimensional advective-diffusive systems, Comput. Methods Appl. Mech. Engrg., 58, 329-336 (1986) · Zbl 0587.76120
[12] Johnson, C.; Szepessy, A., On the convergence of a finite element method for a nonlinear hyperbolic conservation law, Math. Comp., 49, 427-444 (1987) · Zbl 0634.65075
[13] Hansbo, P., Explicit streamline diffusion finite element methods for the compressible Euler equations in conservation variables, J. Comput. Phys., 109, 2, 274-288 (1993) · Zbl 0795.76045
[14] Bazilevs, Y.; Calo, V. M.; Tezduyar, T. E.; Hughes, T. J.R., YZ \(\beta\) discontinuity-capturing for advection-dominated processes with application to arterial drug delivery, Int. J. Numer. Methods Fluids, 54, 593-608 (2007) · Zbl 1207.76049
[15] Nazarov, M.; Hoffman, J., Residual-based artificial viscosity for simulation of turbulent compressible flow using adaptive finite element methods, Internat. J. Numer. Methods Fluids, 71, 3, 339-357 (2013)
[16] Hoffman, J.; Jansson, J.; de Abreu, R. V.; Degirmenci, N. C.; Jansson, N.; Müller, K.; Nazarov, M.; Spühler, J. H., Unicorn: Parallel adaptive finite element simulation of turbulent flow and fluid-structure interaction for deforming domains and complex geometry, Comput. & Fluids, 80, 310-319 (2013), Selected contributions of the 23rd International Conference on Parallel Fluid Dynamics ParCFD2011 · Zbl 1284.76223
[17] Hulbert, G. M., Discontinuity-capturing operators for elastodynamics, Comput. Methods Appl. Mech. Engrg., 96, 3, 409-426 (1992) · Zbl 0764.73084
[18] Henry de Frahan, M. T.; Varadan, S.; Johnsen, E., A new limiting procedure for discontinuous Galerkin methods applied to compressible multiphase flows with shocks and interfaces, J. Comput. Phys., 280, 489-509 (2015) · Zbl 1349.76220
[19] Bazilevs, Y.; Kamran, K.; Moutsanidis, G.; Benson, D. J.; Oñate, E., A new formulation for air-blast fluid-structure interaction using an immersed approach. Part I: basic methodology and FEM-based simulations, Comput. Mech., 60, 1, 83-100 (2017) · Zbl 1386.74046
[20] Bazilevs, Y.; Moutsanidis, G.; Bueno, J.; Kamran, K.; Kamensky, D.; Hillman, M. C.; Gomez, H.; Chen, J. S., A new formulation for air-blast fluid-structure interaction using an immersed approach: part II—coupling of IGA and meshfree discretizations, Comput. Mech., 60, 1, 101-116 (2017) · Zbl 1386.74047
[21] Guermond, J.-L.; Pasquetti, R.; Popov, B., Entropy viscosity method for nonlinear conservation laws, J. Comput. Phys., 230, 4248-4267 (2011), Special issue High Order Methods for CFD Problems · Zbl 1220.65134
[22] ten Eikelder, M.; Akkerman, I., Variation entropy: a continuous local generalization of the TVD property using entropy principles, Comput. Methods Appl. Mech. Engrg., 355, 261-283 (2019)
[23] Hillman, M.; Chen, J. S., An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics, Internat. J. Numer. Methods Engrg., 107, 7, 603-630 (2016) · Zbl 1352.74119
[24] Hughes, T. J.R.; Winget, J., Finite rotation effects in numerical integration of rate constitutive equations arising in large-deformation analysis, Internat. J. Numer. Methods Engrg., 15, 12, 1862-1867 (1980) · Zbl 0463.73081
[25] Marsden, J. E.; Hughes, T. J.R., (Mathematical Foundations of Elasticity. Mathematical Foundations of Elasticity, Dover Civil and Mechanical Engineering Series (1994), Dover)
[26] Simo, J. C.; Marsden, J. E., On the rotated stress tensor and the material version of the Doyle-Ericksen formula, (The Breadth and Depth of Continuum Mechanics (1986), Springer Berlin Heidelberg: Springer Berlin Heidelberg Berlin, Heidelberg), 453-471
[27] Chung, J.; Hulbert, G. M., A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized \(- \alpha\) method, J. Appl. Mech., 60, 371-375 (1993) · Zbl 0775.73337
[28] Bazilevs, Y.; Calo, V. M.; Hughes, T. J.R.; Zhang, Y., Isogeometric fluid-structure interaction: theory, algorithms, and computations, Comput. Mech., 43, 3-37 (2008) · Zbl 1169.74015
[29] Simo, J. C.; Hughes, T. J.R., Computational Inelasticity (1998), Springer-Verlag: Springer-Verlag New York · Zbl 0934.74003
[30] Moutsanidis, G.; Kamensky, D.; Chen, J. S.; Bazilevs, Y., Hyperbolic phase field modeling of brittle fracture: Part II—immersed IGA-RKPM coupling for air-blast-structure interaction, J. Mech. Phys. Solids, 121, 114-132 (2018)
[31] Kamensky, D.; Bazilevs, Y., tIGAr: Automating isogeometric analysis with FEniCS, Comput. Methods Appl. Mech. Engrg., 344, 477-498 (2019)
[32] (Logg, A.; Mardal, K.-A.; Wells, G. N., Automated Solution of Differential Equations by the Finite Element Method (2012), Springer) · Zbl 1247.65105
[33] Alnæs, M. S.; Logg, A.; Ølgaard, K. B.; Rognes, M. E.; Wells, G. N., Unified form language: A domain-specific language for weak formulations of partial differential equations, ACM Trans. Math. Software, 40, 2, 9:1-9:37 (2014) · Zbl 1308.65175
[34] Kirby, R. C.; Logg, A., A compiler for variational forms, ACM Trans. Math. Software, 32, 3, 417-444 (2006)
[35] Logg, A.; Wells, G. N., DOLFIN: Automated finite element computing, ACM Trans. Math. Software, 37, 2, 20:1-20:28 (2010) · Zbl 1364.65254
[36] Homolya, M.; Mitchell, L.; Luporini, F.; Ham, D., TSFC: A structure-preserving form compiler, SIAM J. Sci. Comput., 40, 3, C401-C428 (2018) · Zbl 1388.68020
[37] Repository of tIGAr-based code examples. https://github.com/david-kamensky/residual-based-shock-visc-solids.
[38] Steffen, M.; Kirby, R. M.; Berzins, M., Analysis and reduction of quadrature errors in the material point method (MPM), Internat. J. Numer. Methods Engrg., 76, 922-948 (2008) · Zbl 1195.74300
[39] Gan, Y.; Sun, Z.; Chen, Z.; Zhang, X.; Liu, Y., Enhancement of the material point method using B-spline basis functions, Internat. J. Numer. Methods Engrg., 113, 3, 411-431 (2018)
[40] Dalcin, L.; Collier, N.; Vignal, P.; Côrtes, A. M.A.; Calo, V. M., PetIGA: A framework for high-performance isogeometric analysis, Comput. Methods Appl. Mech. Engrg., 308, 151-181 (2016)
[41] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, K. Rupp, B.F. Smith, S. Zampini, H. Zhang, PETSc Web page, 2015. http://www.mcs.anl.gov/petsc.
[42] Balay, S.; Abhyankar, S.; Adams, M. F.; Brown, J.; Brune, P.; Buschelman, K.; Dalcin, L.; Eijkhout, V.; Gropp, W. D.; Kaushik, D.; Knepley, M. G.; McInnes, L. C.; Rupp, K.; Smith, B. F.; Zampini, S.; Zhang, H., PETSc Users ManualTechnical Report ANL-95/11 - Revision 3.6 (2015), Argonne National Laboratory
[43] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[44] Sedov, Leonid Ivanovich, Similarity and Dimensional Methods in Mechanics (2018), CRC Press
[45] Xu, Fei; Moutsanidis, George; Kamensky, David; Hsu, Ming-Chen; Murugan, Muthuvel; Ghoshal, Anindya; Bazilevs, Yuri, Compressible flows on moving domains: Stabilized methods, weakly enforced essential boundary conditions, sliding interfaces, and application to gas-turbine modeling, Comput. & Fluids, 158, 201-220 (2017) · Zbl 1390.76805
[46] Zhou, G., A Reproducing Kernel Particle Method Framework for Modeling Failure of Structures Subjected to Blast Loadings (2016), UC San Diego, (Ph.D. thesis)
[47] Zhou, G.; Hillman, M., A non-ordinary state-based Godunov-peridynamics formulation for strong shocks in solids, Comput. Part. Mech. (2019)
[48] Hillman, M.; Chen, J. S., An accelerated, convergent, and stable nodal integration in Galerkin meshfree methods for linear and nonlinear mechanics, Internat. J. Numer. Methods Engrg., 107, 7, 603-630 (2016) · Zbl 1352.74119
[49] Moutsanidis, G.; Koester, J. J.; Tupek, M. R.; Chen, J. S.; Bazilevs, Y., Treatment of near-incompressibility in meshfree and immersed-particle methods, Comput. Part. Mech. (2019)
[50] Wilkins, M. L.; Guinan, M. W., Impact of cylinders on a rigid boundary, J. Appl. Phys., 44, 3, 1200-1206 (1973)
[51] Auricchio, F.; Beirão da Veiga, L.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation methods, Math. Models Methods Appl. Sci., 20, 11, 2075-2107 (2010) · Zbl 1226.65091
[52] Auricchio, F.; Beirão da Veiga, L.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249-252, 2-14 (2012), Higher Order Finite Element and Isogeometric Methods · Zbl 1348.74305
[53] Schillinger, D.; Evans, J. A.; Reali, A.; Scott, M. A.; Hughes, T. J.R., Isogeometric collocation: Cost comparison with Galerkin methods and extension to adaptive hierarchical NURBS discretizations, Comput. Methods Appl. Mech. Engrg., 267, 170-232 (2013) · Zbl 1286.65174
[54] Reali, A.; Hughes, T. J.R., An introduction to isogeometric collocation methods, (Beer, G.; Bordas, S., Isogeometric Methods for Numerical Simulation (2015), Springer Vienna: Springer Vienna Vienna), 173-204 · Zbl 1327.74144
[55] G. van Zwieten, J. van Zwieten, C. Verhoosel, E. Fonn, W. Hoitinga, nutils/nutils v3.0, 2018, 105281/zenodo.1165606.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.