×

zbMATH — the first resource for mathematics

Topology optimization for energy dissipation design of lattice structures through snap-through behavior. (English) Zbl 1441.74158
Summary: Topology optimization for damping design of lattice structures is proposed in this work. Compared to metal lattice or viscoelastic materials, lattice structures made of soft materials composed of bi-stable elements show exceptional energy dissipation properties with fully recoverable capacity. Theoretical energy absorption capacity is a key concept to describe damping properties of architectured metamaterials, which reflects the maximum energy absorption per element if a bi-stable chain contains infinite buckling elements. To achieve extreme damping design, topology optimization algorithm is formulated to achieve extreme theoretical energy absorption capacity within a prescribed design domain. An approximate mathematical expression for the energy absorption capacity is formulated with rigorous derivation of sensitivities. Element strain energy in P-norm formulation is constrained at limit points to alleviate material softening failure under large strain. Four design cases are presented and discussed in detail. Results demonstrate that the optimal bi-stable elements achieved by topology optimization algorithm show programmable properties with desired energy dissipation capacity.

MSC:
74P15 Topological methods for optimization problems in solid mechanics
Software:
ABAQUS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Gul, J. Z., 3D printing for soft robotics-a review, Sci. Technol. Adv. Mater., 19, 1, 243-262 (2018)
[2] Truby, R. L.; Lewis, J. A., Printing soft matter in three dimensions, Nature, 540, 7633, 371 (2016)
[3] Holmes, D. P.; Crosby, A. J., Snapping surfaces, Adv. Mater., 19, 21, 3589-3593 (2007)
[4] Lakes, R. S.; Lee, T.; Bersie, A.; Wang, Y., Extreme damping in composite materials with negative-stiffness inclusions, Nature, 410, 6828, 565 (2001)
[5] Nicolaou, Z. G.; Motter, A. E., Mechanical metamaterials with negative compressibility transitions, Nat. Mater., 11, 7, 608 (2012)
[6] Findeisen, C.; Hohe, J.; Kadic, M.; Gumbsch, P., Characteristics of mechanical metamaterials based on buckling elements, J. Mech. Phys. Solids, 102, 151-164 (2017)
[7] Frenzel, T.; Findeisen, C.; Kadic, M.; Gumbsch, P.; Wegener, M., Tailored buckling microlattices as reusable light-weight shock absorbers, Adv. Mater., 28, 28, 5865-5870 (2016)
[8] Shan, S., Multistable architected materials for trapping elastic strain energy, Adv. Mater., 27, 29, 4296-4301 (2015)
[9] Rafsanjani, A.; Akbarzadeh, A.; Pasini, D., Snapping mechanical metamaterials under tension, Adv. Mater., 27, 39, 5931-5935 (2015)
[10] Florijn, B.; Coulais, C.; van Hecke, M., Programmable mechanical metamaterials, Phys. Rev. Lett., 113, 17, Article 175503 pp. (2014)
[11] James, K. A.; Waisman, H., Layout design of a bi-stable cardiovascular stent using topology optimization, Comput. Methods Appl. Mech. Engrg., 305, 869-890 (2016) · Zbl 1425.74375
[12] Puglisi, G.; Truskinovsky, L., Mechanics of a discrete chain with bi-stable elements, J. Mech. Phys. Solids, 48, 1, 1-27 (2000) · Zbl 0973.74060
[13] Slepyan, L.; Cherkaev, A.; Cherkaev, E., Transition waves in bistable structures. II. Analytical solution: wave speed and energy dissipation, J. Mech. Phys. Solids, 53, 2, 407-436 (2005) · Zbl 1146.74336
[14] Restrepo, D.; Mankame, N. D.; Zavattieri, P. D., Phase transforming cellular materials, Extreme Mech. Lett., 4, 52-60 (2015)
[15] Trapper, P.; Volokh, K., Elasticity with energy limiters for modeling dynamic failure propagation, Int. J. Solids Struct., 47, 3389, 25-26-3396 (2010) · Zbl 1203.74127
[16] Volokh, K., Hyperelasticity with softening for modeling materials failure, J. Mech. Phys. Solids, 55, 10, 2237-2264 (2007) · Zbl 1170.74048
[17] Trapper, P.; Volokh, K., Modeling dynamic failure in rubber, Int. J. Fract., 162, 1-2, 245-253 (2010) · Zbl 1425.74432
[18] Volokh, K.; Trapper, P., Fracture toughness from the standpoint of softening hyperelasticity, J. Mech. Phys. Solids, 56, 7, 2459-2472 (2008) · Zbl 1171.74420
[19] Wang, F.; Sigmund, O.; Jensen, J. S., Design of materials with prescribed nonlinear properties, J. Mech. Phys. Solids, 69, 156-174 (2014)
[20] Andreassen, E.; Lazarov, B. S.; Sigmund, O., Design of manufacturable 3D extremal elastic microstructure, Mech. Mater., 69, 1, 1-10 (2014)
[21] Clausen, A.; Wang, F.; Jensen, J. S.; Sigmund, O.; Lewis, J. A., Topology optimized architectures with programmable Poisson’s ratio over large deformations, Adv. Mater., 27, 37, 5523-5527 (2015)
[22] Watts, S.; Tortorelli, D. A., A geometric projection method for designing three-dimensional open lattices with inverse homogenization, Int. J. Numer. Methods Eng., 113, 8, 1411 (2018)
[23] Thomsen, C. R.; Wang, F.; Sigmund, O., Buckling strength topology optimization of 2D periodic materials based on linearized bifurcation analysis, Comput. Methods Appl. Mech. Eng., 339, 115-136 (2018)
[24] Cheng, L.; Bai, J.; To, A. C., Functionally graded lattice structure topology optimization for the design of additive manufactured components with stress constraints, Comput. Methods Appl. Mech. Eng., 344, 334-359 (2019)
[25] Cheng, L.; Liang, X.; Belski, E.; Wang, X.; Sietins, J. M.; Ludwick, S.; To, A., Natural frequency optimization of variable-density additive manufactured lattice structure: theory and experimental validation, J. Manuf. Sci. Eng., 140, 10, Article 105002 pp. (2018)
[26] Mooney, M., A theory of large elastic deformation, J. Appl. Phys., 11, 9, 582-592 (1940) · JFM 66.1021.04
[27] Crisfield, M., An arc-length method including line searches and accelerations, Int. J. Numer. Methods Eng., 19, 9, 1269-1289 (1983) · Zbl 0516.73084
[28] Ritto-Corrêa, M.; Camotim, D., On the arc-length and other quadratic control methods: Established, less known and new implementation procedures, Comput. Struct., 86, 1353, 11-12-1368 (2008)
[29] Yang, Y.-B.; Shieh, M.-S., Solution method for nonlinear problems with multiple critical points, AIAA J., 28, 12, 2110-2116 (1990)
[30] Leon, S. E.; Lages, E. N.; de Araújo, C. N.; Paulino, G. H., On the effect of constraint parameters on the generalized displacement control method, Mech. Res. Commun., 56, 123-129 (2014)
[31] Moore, G.; Spence, A., The calculation of turning points of nonlinear equations, SIAM J. Numer. Anal., 17, 4, 567-576 (1980) · Zbl 0454.65042
[32] Wriggers, P.; Simo, J., A general procedure for the direct computation of turning and bifurcation points, Int. J. Numer. Methods Eng., 30, 1, 155-176 (1990) · Zbl 0728.73069
[33] Bower, A. F., Applied Mechanics of Solids (2009), CRC press
[34] Wang, F.; Lazarov, B. S.; Sigmund, O.; Jensen, J. S., Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems, Comput. Methods Appl. Mech. Eng., 276, 453-472 (2014) · Zbl 1423.74768
[35] Wang, W., Novel slide-ring material/natural rubber composites with high damping property, Sci. Rep., 6, Article 22810 pp. (2016)
[36] Volokh, K.; Ramesh, K., An approach to multi-body interactions in a continuum-atomistic context: Application to analysis of tension instability in carbon nanotubes, Int. J. Solids Struct., 43, 25-26, 7609-7627 (2006) · Zbl 1120.74314
[37] Volokh, K.; Gao, H., On the modified virtual internal bond method, J. Appl. Mech., 72, 6, 969-971 (2005) · Zbl 1111.74678
[38] Volokh, K. Y., Multiscale modeling of material failure: From atomic bonds to elasticity with energy limiters, Int. J. Multiscale Comput. Eng., 6, 5 (2008)
[39] Rittel, D.; Wang, Z.; Merzer, M., Adiabatic shear failure and dynamic stored energy of cold work, Phys. Rev. Lett., 96, 7, Article 075502 pp. (2006)
[40] Volokh, K., Comparison of biomechanical failure criteria for abdominal aortic aneurysm, J. Biomech., 43, 10, 2032-2034 (2010)
[41] Holmberg, E.; Torstenfelt, B.; Klarbring, A., Stress constrained topology optimization, Struct. Multidiscip. Optim., 48, 1, 33-47 (2013) · Zbl 1274.74341
[42] Meaud, J.; Che, K., Tuning elastic wave propagation in multistable architected materials, Int. J. Solids Struct., 122, 69-80 (2017)
[43] Haghpanah, B.; Shirazi, A.; Salari-Sharif, L.; Izard, A. G.; Valdevit, L., Elastic architected materials with extreme damping capacity, Extreme Mech. Lett., 17, 56-61 (2017)
[44] Camescasse, B.; Fernandes, A.; Pouget, J., Bistable buckled beam: Elastica modeling and analysis of static actuation, Int. J. Solids Struct., 50, 19, 2881-2893 (2013)
[45] Camescasse, B.; Fernandes, A.; Pouget, J., Bistable buckled beam and force actuation: Experimental validations, Int. J. Solids Struct., 51, 9, 1750-1757 (2014)
[46] Bruns, T. E.; Sigmund, O., Toward the topology design of mechanisms that exhibit snap-through behavior, Comput. Methods Appl. Mech. Eng., 193, 36-38, 3973-4000 (2004) · Zbl 1079.74598
[47] Bruns, T.; Sigmund, O.; Tortorelli, D. A., Numerical methods for the topology optimization of structures that exhibit snap-through, Int. J. Numer. Methods Eng., 55, 10, 1215-1237 (2002) · Zbl 1027.74053
[48] Bourdin, B., Filters in topology optimization, Int. J. Numer. Methods Eng., 50, 9, 2143-2158 (2001) · Zbl 0971.74062
[49] Guest, J. K.; Prévost, J. H.; Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Int. J. Numer. Methods Eng., 61, 2, 238-254 (2004) · Zbl 1079.74599
[50] Sigmund, O., Morphology-based black and white filters for topology optimization, Struct. Multidiscip. Optim., 33, 4-5, 401-424 (2007)
[51] S. Jameson, A. Jameson, Adjoint formulations for topology, shape and discrete optimization, in: 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, p. 55.
[52] Wallin, M.; Ivarsson, N.; Tortorelli, D., Stiffness optimization of non-linear elastic structures, Comput. Methods Appl. Mech. Eng., 330, 292-307 (2018)
[53] Deng, H.; Cheng, L.; To, A. C., Distortion energy-based topology optimization design of hyperelastic materials, Struct. Multidiscip. Optim., 59, 6, 1895-1913 (2019)
[54] K. Svanberg, MMA and GCMMA-two methods for nonlinear optimization vol, 1, (2007), 1-15.
[55] Bertsekas, D. P., Nonlinear programming, J. Oper. Res. Soc., 48, 3, 334 (1997)
[56] Leon, S. E.; Lages, E. N.; De Araújo, C. N.; Paulino, G. H., On the effect of constraint parameters on the generalized displacement control method, Mech. Res. Commun., 56, 123-129 (2014)
[57] Svanberg, K., The method of moving asymptotes—a new method for structural optimization, Int. J. Numer. Methods Eng., 24, 2, 359-373 (1987) · Zbl 0602.73091
[58] Qui, J.; Lang, J. H.; Slocum, A. H.; Strumpler, R., (A High-Current Electrothermal Bistable MEMS Relay, in Micro Electro Mechanical Systems,2003 IEEE the Sixteenth Annual International Conference on (2003), IEEE), 64-67, MEMS-03 Kyoto
[59] Qiu, J.; Lang, J. H.; Slocum, A. H., A curved-beam bistable mechanism, J. Microelectromech. Syst., 13, 2, 137-146 (2004)
[60] Correa, D. M.; Seepersad, C. C.; Haberman, M. R., Mechanical design of negative stiffness honeycomb materials, Integr. Mater. Manuf. Innov., 4, 1, 10 (2015)
[61] ABAQUS, C., (ABAQUS, Analysis User’s Manual, Version 6.12 (2012))
[62] Che, K.; Yuan, C.; Wu, J.; Qi, H. J.; Meaud, J., Three-dimensional-printed multistable mechanical metamaterials with a deterministic deformation sequence, J. Appl. Mech., 84, 1, Article 011004 pp. (2017)
[63] Le, C.; Norato, J.; Bruns, T.; Ha, C.; Tortorelli, D., Stress-based topology optimization for continua, Struct. Multidiscip. Optim., 41, 4, 605-620 (2010)
[64] Zhou, M.; Sigmund, O., On fully stressed design and p-norm measures in structural optimization, Struct. Multidiscip. Optim., 56, 3, 731-736 (2017)
[65] Systèmes, D., ABAQUS Standard User’S Manual. Version 611-1, Providence, RI (2011), Dassault Systèmes Simulia Corp: Dassault Systèmes Simulia Corp USA
[66] C. Findeisen, J. Hohe, M. Kadic, P.J.J.o.t.M. Gumbsch, P.o. Solids, Characteristics of mechanical metamaterials based on buckling elements 102 (2017) 151-164.
[67] Restrepo, D.; Mankame, N. D.; Zavattieri, P. D., Phase transforming cellular materials, Extrem. Mech. Lett., 4, 52-60 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.