zbMATH — the first resource for mathematics

Equilibrium gravity segregation in porous media with capillary heterogeneity. (English) Zbl 1460.76764
Summary: We study the equilibrium of two phases following gravity segregation under the influence of capillary heterogeneity. Such processes are important in a number of porous media applications, e.g. determining reservoir composition, secondary migration, gravity drainage enhanced oil recovery and CO\(_2\) storage in aquifers. Solutions are derived for three-dimensional saturation distribution \(S_w(x,y,z)\) and given as an analytical formula apart from a constant \(P_c^0\) which is determined by numerical integration. The first solution assumes hydrostatic pressure and applies to cases without capillary entry pressure \((P_c(S_w=1)=0)\). The solution can be used for validation of numerical simulations and we show a close match for a number of cases. A second analytical solution is derived, extending the first, to cases of random log-normally distributed permeability fields. A formula for ensemble average saturation solution is presented and a comparison to solutions of various realizations is discussed. When capillary entry pressure is present, the solution based on hydrostatic pressure may be inaccurate due to entry pressure trapping which occurs when regions of \(S_w=1\) are present. Using numerical simulation, we extend the solution to include estimations of entry pressure trapping for a range of parameters and show its applicability. The comparison of analytical and numerical results helps illustrate and draw insight on the trapping mechanism.
76S05 Flows in porous media; filtration; seepage
76B45 Capillarity (surface tension) for incompressible inviscid fluids
porous media
Full Text: DOI
[1] Andersen, O., Gasda, S. E. & Nilsen, H. M.2015Vertically averaged equations with variable density for CO_2 flow in porous media. Trans. Porous Med.107 (1), 95-127.
[2] Bedrikovetsky, P.2013Mathematical Theory of Oil and Gas Recovery: With Applications to ex-USSR Oil and Gas Fields, vol. 4, chap. 25. Springer.
[3] Behzadi, H. & Alvarado, V.2012Upscaling of upward CO_2 migration in 2D system. Adv. Water Resour.46, 46-54.
[4] Brooks, R. H. & Corey, A. T.1966Properties of porous media affecting fluid flow. J. Irrigation Drainage Division92 (2), 61-90.
[5] Bryant, S. L., Lakshminarasimhan, S. & Pope, G. A.2006Buoyancy-dominated multiphase flow and its impact on geological sequestration of CO_2. In SPE/DOE Symposium on Improved Oil Recovery. Society of Petroleum Engineers.
[6] Cao, H.2002, Development of techniques for general purpose simulators. PhD thesis, Stanford University, Stanford, CA, USA.
[7] Carruthers, D. J. & Van Wijngaarden, M.2000Modelling viscous-dominated fluid transport using modified invasion percolation techniques. J. Geochem. Explor.69, 669-672.
[8] Cheng, K. B., Rabinovich, A. & Dagan, G.2019Stochastic modeling of oscillatory pumping in heterogeneous aquifers with application to Boise aquifer test. J. Hydrol.569, 278-290.
[9] Deng, H., Stauffer, P. H., Dai, Z., Jiao, Z. & Surdam, R. C.2012Simulation of industrial-scale CO_2 storage: Multi-scale heterogeneity and its impacts on storage capacity, injectivity and leakage. Intl J. Greenh. Gas Control10, 397-418.
[10] Dentz, M. & Tartakovsky, D. M.2009Abrupt-interface solution for carbon dioxide injection into porous media. Trans. Porous Med.79 (1), 15.
[11] Deutsch, C. V. & Journel, A. G.1992GSLIB: Geostatistical Software Library and User’s Guide. Oxford University Press.
[12] Donato, G. D., Tavassoli, Z. & Blunt, M. J.2006Analytical and numerical analysis of oil recovery by gravity drainage. J. Petrol. Sci. Engng54 (1), 55-69.
[13] Dongxiao, Z. & Tchelepi, H.1999Stochastic analysis of immiscible two-phase flow in heterogeneous media. SPE J.4 (04), 380-388.
[14] Dullien, F. A. L.2012Porous Media: Fluid Transport and Pore Structure. Academic.
[15] Gasda, S. E., Nilsen, H. M. & Dahle, H. K.2013Impact of structural heterogeneity on upscaled models for large-scale CO_2 migration and trapping in saline aquifers. Adv. Water Resour.62, 520-532.
[16] Gasda, S. E., Nordbotten, J. M. & Celia, M. A.2009Vertical equilibrium with sub-scale analytical methods for geological CO_2 sequestration. Comput. Geosci.13 (4), 469-481. · Zbl 1190.86013
[17] Van Genuchten, M. T.1980A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J.44 (5), 892-898.
[18] Gershenzon, N. I., Soltanian, M., Jr, R. W. R. & Dominic, D. F.2014Influence of small scale heterogeneity on CO_2 trapping processes in deep saline aquifers. Energy Procedia59, 166-173.
[19] Golding, M. J. & Huppert, H. E.2010The effect of confining impermeable boundaries on gravity currents in a porous medium. J. Fluid Mech.649, 1-17. · Zbl 1189.76593
[20] Golding, M. J., Neufeld, J. A., Hesse, M. A. & Huppert, H. E.2011Two-phase gravity currents in porous media. J. Fluid Mech.678, 248-270. · Zbl 1241.76378
[21] Green, C. P. & Ennis-King, J.2013Residual trapping beneath impermeable barriers during buoyant migration of CO_2. Trans. Porous Med.98 (3), 505-524.
[22] Hagoort, J.1980Oil recovery by gravity drainage. Soc. Petrol. Engng J.20 (03), 139-150.
[23] Haldorsen, H. H., Brand, P. J. & Macdonald, C. J.1987Review of the stochastic nature of reservoirs. In Conference Proceedings of Mathematics in Oil Production. European Association of Geoscientists & Engineers.
[24] Han, W. S., Lee, S.-Y., Lu, C. & Mcpherson, B. J.2010Effects of permeability on CO_2 trapping mechanisms and buoyancy-driven CO_2 migration in saline formations. Water Resour. Res.46 (7), W07510.
[25] Hesse, M. A., Orr, F. M. & Tchelepi, H. A.2008Gravity currents with residual trapping. J. Fluid Mech.611, 35-60. · Zbl 1151.76596
[26] Hesse, M. A., Tchelepi, H. A., Cantwel, B. J. & Orr, F. M.2007Gravity currents in horizontal porous layers: transition from early to late self-similarity. J. Fluid Mech.577, 363-383. · Zbl 1119.76064
[27] Hesse, M. A. & Woods, A. W.2010Buoyant dispersal of CO_2 during geological storage. Geophys. Res. Lett.37 (1), L01403.
[28] Hilfer, R.2006Capillary pressure, hysteresis and residual saturation in porous media. Physica A359, 119-128.
[29] Hoteit, H. & Firoozabadi, A.2008Numerical modeling of two-phase flow in heterogeneous permeable media with different capillarity pressures. Adv. Water Resour.31 (1), 56-73.
[30] Hovorka, S. D., Doughty, C., Benson, S. M., Pruess, K. & Knox, P. R.2004The impact of geological heterogeneity on CO_2 storage in brine formations: a case study from the Texas gulf coast. Geol. Soc. Lond. Spec. Publ.233 (1), 147-163.
[31] Ide, S. T., Jessen, K. Jr & Orr, F. M.2007Storage of CO_2 in saline aquifers: effects of gravity, viscous, and capillary forces on amount and timing of trapping. Intl J. Greenh. Gas Control1 (4), 481-491.
[32] Ioannidis, M. A., Chatzis, I. & Dullien, F. A. L.1996Macroscopic percolation model of immiscible displacement: Effects of buoyancy and spatial structure. Water Resour. Res.32 (11), 3297-3310.
[33] Juanes, R., Macminn, C. W. & Szulczewski, M. L.2010The footprint of the CO_2 plume during carbon dioxide storage in saline aquifers: storage efficiency for capillary trapping at the basin scale. Trans. Porous Med.82 (1), 19-30.
[34] Juanes, R., Spiteri, E. J., Orr, F. M. Jr & Blunt, M. J.2006Impact of relative permeability hysteresis on geological CO_2 storage. Water Resour. Res.42 (12), W12418.
[35] Krause, M. H.2012Modeling and investigation of the influence of capillary heterogeneity on relative permeability. In SPE Annual Technical Conference and Exhibition, San Antonio, Texas, SPE-160909-STU. Society of Petroleum Engineers.
[36] Krevor, S., Blunt, M. J., Benson, S. M., Pentland, C. H., Reynolds, C., Al-Menhali, A. & Niu, B.2015Capillary trapping for geologic carbon dioxide storage-from pore scale physics to field scale implications. Intl J. Greenh. Gas Control40, 221-237.
[37] Krevor, S. C., Pini, R., Li, B. & Benson, S. M.2011Capillary heterogeneity trapping of CO_2 in a sandstone rock at reservoir conditions. Geophys. Res. Lett.38 (15), L15401.
[38] Krevor, S. C., Pini, R., Zuo, L. & Benson, S. M.2012Relative permeability and trapping of CO_2 and water in sandstone rocks at reservoir conditions. Water Resour. Res.48 (2), W02532.
[39] Kuo, C.-W. & Benson, S. M.2015Numerical and analytical study of effects of small scale heterogeneity on CO_2 /brine multiphase flow system in horizontal corefloods. Adv. Water Resour.79, 1-17.
[40] Lee, S. T.1989Capillary-gravity equilibria for hydrocarbon fluids in porous media. In SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers.
[41] Lenormand, R., Zarcone, C. & Sarr, A.1983Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech.135, 337-353.
[42] Li, B. & Benson, S. M.2015Influence of small-scale heterogeneity on upward CO_2 plume migration in storage aquifers. Adv. Water Resour.83, 389-404.
[43] Li, B.2011 Including fine-scale capillary heterogeneity in modeling the flow of \(CO_2\) and brine in reservoir cores. PhD thesis, Stanford University.
[44] Loubens, R. D. & Ramakrishnan, T. S.2011Analysis and computation of gravity-induced migration in porous media. J. Fluid Mech.675, 60-86. · Zbl 1241.76364
[45] Macminn, C. W. & Juanes, R.2009Post-injection spreading and trapping of CO_2 in saline aquifers: impact of the plume shape at the end of injection. Comput. Geosci.13 (4), 483. · Zbl 1190.86014
[46] Malekzadeh, F. A., Heidari, R. & Dusseault, M.2017An analytical solution for capillary gravity drainage with dominant viscous forces. Trans. Porous Med.118 (3), 417-434.
[47] Montel, F., Bickert, J., Lagisquet, A. & Galliéro, G.2007Initial state of petroleum reservoirs: a comprehensive approach. J. Petrol. Sci. Engng58 (3-4), 391-402.
[48] Mouche, E., Hayek, M. & Mügler, C.2010Upscaling of CO_2 vertical migration through a periodic layered porous medium: the capillary-free and capillary-dominant cases. Adv. Water Resour.33 (9), 1164-1175.
[49] Nilsen, H. M., Lie, K.-A. & Andersen, O.2016Fully-implicit simulation of vertical-equilibrium models with hysteresis and capillary fringe. Comput. Geosci.20 (1), 49-67. · Zbl 1392.86020
[50] Nooruddin, H. A. & Blunt, M. J.2018Large-scale invasion percolation with trapping for upscaling capillary-controlled Darcy-scale flow. Trans. Porous Med.121 (2), 479-506.
[51] Nordbotten, J. M. & Celia, M. A.2006Similarity solutions for fluid injection into confined aquifers. J. Fluid Mech.561, 307-327. · Zbl 1157.76317
[52] Nordbotten, J. M. & Celia, M. A.2011Geological Storage of CO_2 : Modeling Approaches for Large-scale Simulation. Wiley.
[53] Nordbotten, J. M. & Dahle, H. K.2010Impact of capillary forces on large-scale migration of CO_2. In XVIII International Conference on Water Resources. CMWR.
[54] Nordbotten, J. M. & Dahle, H. K.2011Impact of the capillary fringe in vertically integrated models for CO_2 storage. Water Resour. Res.47 (2), W02537.
[55] Oldenburg, C. M., Mukhopadhyay, S. & Cihan, A.2016On the use of Darcy’s law and invasion-percolation approaches for modeling large-scale geologic carbon sequestration. Greenhouse Gases: Sci. Technol.6 (1), 19-33.
[56] Pentland, C. H., El-Maghraby, R., Iglauer, S. & Blunt, M. J.2011Measurements of the capillary trapping of super-critical carbon dioxide in Berea sandstone. Geophys. Res. Lett.38 (6), L06401.
[57] Perrin, J. C. & Benson, S. M.2010An experimental study on the influence of sub-core scale heterogeneities on CO_2 distribution in reservoir rocks. Trans. Porous Med.82 (1), 93-109.
[58] Pinder, G. F. & Gray, W. G.2008Essentials of Multiphase Flow and Transport in Porous Media. Wiley.
[59] Pini, R. & Benson, S. M.2017Capillary pressure heterogeneity and hysteresis for the supercritical CO_2 /water system in a sandstone. Adv. Water Resour.108, 277-292.
[60] Rabinovich, A.2018Analytical corrections to core relative permeability for low-flow-rate simulation. SPE J.23 (05), 1-851.
[61] Rabinovich, A., Dagan, G. & Miloh, T.2012Boundary effects on effective conductivity of random heterogeneous media with spherical inclusions. Phys. Rev. E86 (4), 046601.
[62] Rabinovich, A., Itthisawatpan, K. & Durlofsky, L. J.2015Upscaling of CO_2 injection into brine with capillary heterogeneity effects. J. Petrol. Sci. Engng134, 60-75.
[63] Rabinovich, A., Li, B. & Durlofsky, L. J.2016Analytical approximations for effective relative permeability in the capillary limit. Water Resour. Res.52 (10), 7645-7667.
[64] Remy, N., Boucher, A. & Wu, J.2009Applied Geostatistics with SGeMS: A User’s Guide. Cambridge University Press.
[65] Saadatpoor, E., Bryant, S. L. & Sepehrnoori, K.2011Effect of upscaling heterogeneous domain on CO_2 trapping mechanisms. Energy Procedia4, 5066-5073.
[66] Shapiro, A. A. & Stenby, E. H.1996On the nonequilibrium segregation state of a two-phase mixture in a porous column. Trans. Porous Med.23 (1), 83-106.
[67] Smith, E. H.2012The influence of small-scale heterogeneity on average relative permeability. In Reservoir Characterization II, p. 52. Academic.
[68] Trevisan, L., Krishnamurthy, P. G. & Meckel, T. A.2017aImpact of 3D capillary heterogeneity and bedform architecture at the sub-meter scale on CO_2 saturation for buoyant flow in clastic aquifers. Intl J. Greenh. Gas Control56, 237-249.
[69] Trevisan, L., Illangasekare, T. H. & Meckel, T. A.2017bModelling plume behavior through a heterogeneous sand pack using a commercial invasion percolation model. Geomech. Geophys. Geo-Energy Geo-Resour.3 (3), 327-337.
[70] Wei, N., Gill, M., Crandall, D., Mcintyre, D., Wang, Y., Li, K. B. X. & Bromhal, G.2014CO_2 flooding properties of liujiagou sandstone: influence of sub-core scale structure heterogeneity. Greenh. Gas. Sci. Technol.4 (3), 400-418.
[71] Wheaton, R. J.1991Treatment of variations of composition with depth in gas-condensate reservoirs (includes associated papers 23549 and 24109). SPE Res. Engng6 (02), 239-244.
[72] Yortsos, Y. C., Satik, C., Bacri, J.-C. & Salin, D.1993Large-scale percolation theory of drainage. Trans. Porous Med.10 (2), 171-195.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.