×

zbMATH — the first resource for mathematics

Smoothed bootstrap bandwidth selection for nonparametric hazard rate estimation. (English) Zbl 07193711
Summary: A smoothed bootstrap method is presented for the purpose of bandwidth selection in nonparametric hazard rate estimation for iid data. In this context, two new bootstrap bandwidth selectors are established based on the exact expression of the bootstrap version of the mean integrated squared error of some approximations of the kernel hazard rate estimator. This is very useful since Monte Carlo approximation is no longer needed for the implementation of the two bootstrap selectors. A simulation study is carried out in order to show the empirical performance of the new bootstrap bandwidths and to compare them with other existing selectors. The methods are illustrated by applying them to a diabetes data set.
MSC:
62 Statistics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Watson G, Leadbetter M.Hazard analysis I. Biometrika. 1964a;51:175-184. doi: 10.1093/biomet/51.1-2.175[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0128.13503
[2] Watson G, Leadbetter M.Hazard analysis II. Sankhy Ser A. 1964b;26:101-116. [Google Scholar] · Zbl 0138.13906
[3] Tanner M, Wong W.The estimation of the hazard function from randomly censored data by the Kernel method. Ann Statist. 1983;11:989-993. doi: 10.1214/aos/1176346265[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0546.62017
[4] Tanner M, Wong W.Data-based nonparametric estimation of the hazard function with applications to model diagnostics and exploratory analysis. J Am Statist Assoc. 1984;79:174-182. [Taylor & Francis Online], [Web of Science ®], [Google Scholar]
[5] Lo S, Mack Y, Wang J.Density and hazard rate estimation for censored data via strong representation of the Kaplan-Meier estimator. Probab Theory Relat Fields. 1989;80:461-473. doi: 10.1007/BF01794434[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0637.62039
[6] Patil P.Bandwidth choice for nonparametric hazard rate estimation. J Statist Plan Inference. 1993;35:15-30. doi: 10.1016/0378-3758(93)90064-D[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0777.62042
[7] Patil P.On the least squares cross-validation bandwidth in hazard rate estimation. Ann Statist. 1993;21(4):1792-1810. doi: 10.1214/aos/1176349398[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0795.62041
[8] Murthy VK.Estimation of jumps, reliability and hazard rate. Ann Math Statist. 1965;36(3):1032-1040. doi:10.1214/aoms/1177700075[Crossref], [Google Scholar] · Zbl 0134.36103
[9] Rice J, Rosenblatt M.Estimation of the log survivor function and hazard function. Sankhy Ser A. 1976;38(1):60-78. [Google Scholar] · Zbl 0398.62081
[10] Singpurwalla ND, Wong MY.Estimation of the failure rate. A survey of nonparametric methods. Part I. Non-Bayesian methods. Commun Statist Theory Methods. 1980;12:5-40. [Google Scholar]
[11] Singpurwalla ND, Wong MY.Kernel estimators of the failure-rate function and density estimation: an analogy. J Am Statist Assoc. 1983;78(382):478-481. doi: 10.1080/01621459.1983.10478000[Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0523.62034
[12] Rao BP. Nonparametric functional estimation. New York: Academic Press; 1983. [Google Scholar] · Zbl 0542.62025
[13] Sarda P, Vieu P.Smoothing parameter selection in hazard estimation. Statist Probab Lett. 1991;11:429-434. doi: 10.1016/0167-7152(91)90192-T[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0724.62043
[14] Gámiz ML, Mammen E, Miranda MDM, et al. Double one-sided cross-validation of local linear hazards. J R Statist Soc Ser B (Statist Methodol). 2016;78(4):755-779. doi:10.1111/rssb.12133[Crossref], [Google Scholar] · Zbl 1414.62329
[15] Nielsen JP, Tanggaard C.Boundary and bias correction in kernel hazard estimation. Scand J Statist. 2001;28(4):675-698. doi:10.1111/1467-9469.00262[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1010.62093
[16] Efron B.Bootstrap methods: another look at the jackniffe. Ann Statist. 1979;7:1-26. doi: 10.1214/aos/1176344552[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0406.62024
[17] Efron B, Tibishirani R. An introduction to the bootstrap. New York: Chapman and Hall; 1993. [Crossref], [Google Scholar]
[18] Davison A, Hinkley D. Bootstrap methods and their application. New York: Cambridge University Press; 1997. [Crossref], [Google Scholar] · Zbl 0886.62001
[19] González-Manteiga W, Cao R, Marron J.Bootstrap selection of the smoothing parameter in nonparametric hazard rate estimation. J Am Statist Assoc. 1996;91(435):1130-1140. [Taylor & Francis Online], [Web of Science ®], [Google Scholar] · Zbl 0880.62045
[20] Marron J. Bootstrap bandwidth selection. In: LePage R, Billard L, editors. Exploring the limits of bootstrap; 1992. p. 152-162. [Google Scholar]
[21] Silverman B, Young G.The bootstrap: to smooth or not to smooth? Biometrika. 1987;74:469-479. doi: 10.1093/biomet/74.3.469[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0654.62034
[22] Cao R.Bootstrapping the mean integrated squared error. J Mult Anal. 1993;45:137-160. doi: 10.1006/jmva.1993.1030[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0779.62038
[23] Barbeito I, Cao R.Smoothed stationary bootstrap bandwidth selection for density estimation with dependent data. Comput Statist Data Anal. 2016;104:130-147. doi: 10.1016/j.csda.2016.06.015[Crossref], [Web of Science ®], [Google Scholar] · Zbl 06918032
[24] Barbeito I, Cao R. A review and some new proposals for bandwidth selection in nonparametric density estimation for dependent data. Cham: Springer International Publishing; 2017. p. 173-208. doi:10.1007/978-3-319-50986-0_10[Crossref], [Google Scholar] · Zbl 1383.62095
[25] Parzen E.Estimation of a probability density-function and mode. Ann Math Statist. 1962;33:1065-1076. doi: 10.1214/aoms/1177704472[Crossref], [Google Scholar] · Zbl 0116.11302
[26] Rosenblatt M.Estimation of a probability density-function and mode. Ann Math Statist. 1956;27:832-837. doi: 10.1214/aoms/1177728190[Crossref], [Google Scholar] · Zbl 0073.14602
[27] Mammen E, Miranda MDM, Nielsen JP, et al. Further theoretical and practical insight to the do-validated bandwidth selector. J Korean Statist Soc. 2014;43(3):355-365. Available from: http://www.sciencedirect.com/science/article/pii/S1226319213000744 doi: 10.1016/j.jkss.2013.11.001[Crossref], [Web of Science ®], [Google Scholar] · Zbl 1306.62096
[28] Quintela del Río A, Estévez-Pérez G.Nonparametric kernel distribution function estimation with kerdiest: an R package for bandwidth choice and applications. J Statist Softw. 2012;50(8):1-21. Available from: http://www.jstatsoft.org/v50/i08/ doi: 10.18637/jss.v050.i08[Crossref], [PubMed], [Web of Science ®], [Google Scholar]
[29] Curran J, Bolstad W. Bolstad: Bolstad functions; 2016. R package version 0.2-33. [Google Scholar]
[30] Genz A, Bretz F. Computation of multivariate normal and t probabilities. Heidelberg: Springer-Verlag; 2009. Lecture Notes in Statistics. [Crossref], [Google Scholar] · Zbl 1204.62088
[31] Genz A, Bretz F, Miwa T, et al. mvtnorm: multivariate normal and t distributions; 2017. R package version 1.0-6; Available from: https://CRAN.R-project.org/package=mvtnorm. [Google Scholar]
[32] Gamiz M, Mammen E, Martinez-Miranda M, et al. Dovalidation: local linear hazard estimation with do-validated and cross-validated bandwidths; 2014. R package version 0.1.0. Available from: https://CRAN.R-project.org/package=DOvalidation. [Google Scholar]
[33] Pfaff B, McNeil A. Qrm: provides r-language code to examine quantitative risk management concepts; 2016. R package version 0.4-13. Available from: https://CRAN.R-project.org/package=QRM. [Google Scholar]
[34] Marron J, Wand M.Exact mean integrated squared error. Ann Statist. 1992;20(2):712-736. doi: 10.1214/aos/1176348653[Crossref], [Web of Science ®], [Google Scholar] · Zbl 0746.62040
[35] Venables WN, Ripley BD. Modern applied statistics with s. 4th ed.New York: Springer; 2002. ISBN 0-387-95457-0. Available from: http://www.stats.ox.ac.uk/pub/MASS4. [Crossref], [Google Scholar] · Zbl 1006.62003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.