×

zbMATH — the first resource for mathematics

A numerical comparison of different solvers for large-scale, continuous-time algebraic Riccati equations and LQR problems. (English) Zbl 1437.65021
Summary: In this paper, we discuss numerical methods for solving large-scale continuous-time algebraic Riccati equations. These methods have been the focus of intensive research in recent years, and significant progress has been made in both the theoretical understanding and efficient implementation of various competing algorithms. There are several goals of this manuscript. The first is to gather in one place an overview of different approaches for solving large-scale Riccati equations, and to point to the recent advances in each of them. The second goal is to analyze and compare the main computational ingredients of these algorithms and to detect their strong points and their potential bottlenecks. Finally, we want to compare the effective implementations of all methods on a set of relevant benchmark examples, giving an indication of their relative performance.
Reviewer: Reviewer (Berlin)

MSC:
65F45 Numerical methods for matrix equations
65F55 Numerical methods for low-rank matrix approximation; matrix compression
15A24 Matrix equations and identities
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] E. L. Allgower and K. Georg, Introduction to Numerical Continuation Methods, Classics Appl. Math. 45, SIAM, Philadelphia, 2003, https://doi.org/10.1137/1.9780898719154. · Zbl 1036.65047
[2] L. Amodei and J.-M. Buchot, An invariant subspace method for large-scale algebraic Riccati equation, Appl. Numer. Math., 60 (2010), pp. 1067-1082, https://doi.org/10.1016/j.apnum.2009.09.006. · Zbl 1227.65053
[3] L. Amodei and J.-M. Buchot, A stabilization algorithm of the Navier-Stokes equations based on algebraic Bernoulli equation, Numer. Linear Alg. Appl., 19 (2012), pp. 700-727, https://doi.org/10.1002/nla.799. · Zbl 1274.76186
[4] A. C. Antoulas, Approximation of Large-Scale Dynamical Systems, Adv. Des. Control 6, SIAM, Philadelphia, 2005, https://doi.org/10.1137/1.9780898718713. · Zbl 1112.93002
[5] A. C. Antoulas, D. C. Sorensen, and Y. Zhou, On the decay rate of Hankel singular values and related issues, Systems Control Lett., 46 (2002), pp. 323-342, https://doi.org/10.1016/S0167-6911(02)00147-0. · Zbl 1003.93024
[6] W. F. Arnold, III, and A. J. Laub, Generalized Eigenproblem Algorithms and Software for Algebraic Riccati Equations, Proc. IEEE, 72 (1984), pp. 1746-1754.
[7] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, eds., Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide, Software Environ. Tools 11, SIAM, Philadelphia, 2000, https://doi.org/10.1137/1.9780898719581. · Zbl 0965.65058
[8] J. Baker, M. Embree, and J. Sabino, Fast singular value decay for Lyapunov solutions with nonnormal coefficients, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 656-668, https://doi.org/10.1137/140993867. · Zbl 1320.15011
[9] H. T. Banks and K. Ito, A numerical algorithm for optimal feedback gains in high dimensional linear quadratic regulator problems, SIAM J. Control Optim., 29 (1991), pp. 499-515, https://doi.org/10.1137/0329029. · Zbl 0736.65043
[10] E. Bänsch and P. Benner, Stabilization of incompressible flow problems by Riccati-based feedback, in Constrained Optimization and Optimal Control for Partial Differential Equations, G. Leugering, S. Engell, A. Griewank, M. Hinze, R. Rannacher, V. Schulz, M. Ulbrich, and S. Ulbrich, eds., Internat. Ser. Numer. Math. 160, Birkhäuser, Basel, 2012, pp. 5-20, https://doi.org/10.1007/978-3-0348-0133-1.
[11] E. Bänsch, P. Benner, J. Saak, and H. K. Weichelt, Riccati-based boundary feedback stabilization of incompressible Navier-Stokes flows, SIAM J. Sci. Comput., 37 (2015), pp. A832-A858, https://doi.org/10.1137/140980016. · Zbl 1312.93083
[12] S. Barrachina, P. Benner, and E. S. Quintana-Ortí, Efficient algorithms for generalized algebraic Bernoulli equations based on the matrix sign function, Numer. Algorithms, 46 (2007), pp. 351-368, https://doi.org/10.1007/s11075-007-9143-x. · Zbl 1132.65033
[13] P. Benner, Computational methods for linear-quadratic optimization, in Proceedings of the Workshop “Numerical Methods in Optimization” (Cortona, 1997). Rend. Circ. Mat. Palermo (2) Suppl. 58, Circ. Math. Palermo, Palermo, Italy, 1999, pp. 21-56.
[14] P. Benner, Partial Stabilization of Descriptor Systems using Spectral Projectors, in Numerical Linear Algebra in Signals, Systems and Control, P. Van Dooren, S. P. Bhattacharyya, R. H. Chan, V. Olshevsky, and A. Routray, eds., Lect. Notes Electr. Eng. 80, Springer, Dordrecht, The Netherlands, 2011, pp. 55-76, https://doi.org/10.1007/978-94-007-0602-6_3.
[15] P. Benner, M. Bollhöfer, D. Kressner, C. Mehl, and T. Stykel, Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory, Springer, Cham, 2015, https://doi.org/10.1007/978-3-319-15260-8_1. · Zbl 1322.00048
[16] P. Benner and Z. Bujanović, On the solution of large-scale algebraic Riccati equations by using low-dimensional invariant subspaces, Linear Algebra Appl., 488 (2016), pp. 430-459, https://doi.org/10.1016/j.laa.2015.09.027. · Zbl 1330.15017
[17] P. Benner, Z. Bujanović, P. Kürschner, and J. Saak, RADI: A low-rank ADI-type algorithm for large scale algebraic Riccati equations, Numer. Math., 138 (2018), pp. 301-330, https://doi.org/10.1007/s00211-017-0907-5. · Zbl 1385.65035
[18] P. Benner and R. Byers, An exact line search method for solving generalized continuous-time algebraic Riccati equations, IEEE Trans. Automat. Control, 43 (1998), pp. 101-107, https://doi.org/10.1109/9.654908. · Zbl 0908.93026
[19] P. Benner and J. Heiland, LQG-balanced truncation low-order controller for stabilization of laminar flows, in Active Flow and Combustion Control 2014, R. King, ed., Notes Numer. Fluid Mech. Multidiscip. Des. 127, Springer, Cham, 2015, pp. 365-379, https://doi.org/10.1007/978-3-319-11967-0_22. · Zbl 1308.76105
[20] P. Benner, M. Heinkenschloss, J. Saak, and H. K. Weichelt, An inexact low-rank Newton-ADI method for large-scale algebraic Riccati equations, Appl. Numer. Math., 108 (2016), pp. 125-142, https://doi.org/10.1016/j.apnum.2016.05.006. · Zbl 1346.65017
[21] P. Benner, M. Heinkenschloss, J. Saak, and H. K. Weichelt, Efficient solution of large-scale algebraic Riccati equations associated with index-2 DAEs via the inexact low-rank Newton-ADI method, Appl. Numer. Math., 152 (2020), pp. 358-354, https://doi.org/10.1016/j.apnum.2019.11.016 · Zbl 07173180
[22] P. Benner, P. Kürschner, and J. Saak, A reformulated low-rank ADI iteration with explicit residual factors, Proc. Appl. Math. Mech., 13 (2013), pp. 585-586, https://doi.org/10.1002/pamm.201210308.
[23] P. Benner, P. Kürschner, and J. Saak, Efficient handling of complex shift parameters in the low-rank Cholesky factor ADI method, Numer. Algorithms, 62 (2013), pp. 225-251, https://doi.org/10.1007/s11075-012-9569-7. · Zbl 1267.65047
[24] P. Benner, P. Kürschner, and J. Saak, Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations, Electrn. Trans. Numer. Anal., 43 (2014), pp. 142-162. · Zbl 1312.65068
[25] P. Benner, P. Kürschner, and J. Saak, Frequency-limited balanced truncation with low-rank approximations, SIAM J. Sci. Comput., 38 (2016), pp. A471-A499, https://doi.org/10.1137/15M1030911. · Zbl 1391.65123
[26] P. Benner, P. Kürschner, and J. Saak, Low-rank Newton-ADI methods for large nonsymmetric algebraic Riccati equations, J. Frankl. Inst., 353 (2016), pp. 1147-1167, https://doi.org/10.1016/j.jfranklin.2015.04.016. · Zbl 1336.93056
[27] P. Benner, J.-R. Li, and T. Penzl, Numerical solution of large Lyapunov equations, Riccati equations, and linear-quadratic control problems, Numer. Linear Algebra Appl., 15 (2008), pp. 755-777, https://doi.org/10.1002/nla.622. · Zbl 1212.65245
[28] P. Benner, V. Mehrmann, and D. C. Sorensen, Dimension Reduction of Large-Scale Systems, Lect. Notes Comput. Sci. Eng. 45, Springer-Verlag, Berlin, Heidelberg, Germany, 2005. · Zbl 1066.65004
[29] P. Benner and H. Mena, Numerical solution of the infinite-dimensional LQR-problem and the associated differential Riccati equations, J. Numer. Math., 26 (2018), pp. 1-20, https://doi.org/10.1515/jnma-2016-1039. · Zbl 1444.65032
[30] P. Benner and J. Saak, Efficient solution of large scale Lyapunov and Riccati equations arising in model order reduction problems, Proc. Appl. Math. Mech., 8 (2008), pp. 10085-10088, https://doi.org/10.1002/pamm.200810085. · Zbl 1392.65109
[31] P. Benner and J. Saak, A Galerkin-Newton-ADI Method for Solving Large-Scale Algebraic Riccati Equations, preprint SPP1253-090, SPP1253, 2010, http://www.am.uni-erlangen.de/home/spp1253/wiki/index.php/Preprints. · Zbl 1346.65017
[32] P. Benner and J. Saak, Numerical solution of large and sparse continuous time algebraic matrix Riccati and Lyapunov equations: A state of the art survey, GAMM Mitt., 36 (2013), pp. 32-52, https://doi.org/10.1002/gamm.201310003. · Zbl 1279.65044
[33] P. Benner and T. Stykel, Numerical solution of projected algebraic Riccati equations, SIAM J. Numer. Anal, 52 (2014), pp. 581-600, https://doi.org/10.1137/130923993. · Zbl 1298.65076
[34] M. Berljafa and S. Güttel, Generalized rational Krylov decompositions with an application to rational approximation, SIAM J. Matrix Anal. Appl., 36 (2015), pp. 894-916, https://doi.org/10.1137/140998081. · Zbl 1319.65028
[35] D. A. Bini, B. Iannazzo, and B. Meini, Numerical Solution of Algebraic Riccati Equations, Fundamentals of Algorithms 9, SIAM, Philadelphia, 2011, https://doi.org/10.1137/1.9781611972092. · Zbl 1244.65058
[36] T. Bonin, H. Faßbender, A. Soppa, and M. Zaeh, A fully adaptive rational global Arnoldi method for the model-order reduction of second-order MIMO systems with proportional damping, Math. Comput. Simulat., 122 (2015), pp. 1-19, https://doi.org/10.1016/j.matcom.2015.08.017.
[37] J. L. Casti, Dynamical Systems and Their Applications: Linear Theory, Mathematics in Science and Engineering, Academic Press, New York, 1977. · Zbl 0555.93002
[38] T. Çimen, State-dependent Riccati equation (SDRE) control: A survey, IFAC Proc. Vol., 41 (2008), pp. 3761-3775, https://doi.org/10.3182/20080706-5-KR-1001.00635.
[39] C. Choi and A. J. Laub, Efficient matrix-valued algorithms for solving stiff Riccati differential equations, IEEE Trans. Automat. Control, 35 (1990), pp. 770-776, https://doi.org/10.1109/9.57015. · Zbl 0714.93011
[40] D. Chu, X. Liu, and V. Mehrmann, A numerical method for computing the Hamiltonian Schur form, Numer. Math., 105 (2006), pp. 375-412, https://doi.org/10.1007/s00211-006-0043-0. · Zbl 1116.65043
[41] E. K. W. Chu, H. Y. Fan, and W. W. Lin, A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations, Linear Algebra Appl., 396 (2005), pp. 55-80, https://doi.org/10.1016/j.laa.2004.10.010. · Zbl 1151.93340
[42] T. A. Davis and Y. Hu, The University of Florida sparse matrix collection, ACM Trans. Math. Softw., 38 (2011), 1, https://doi.org/10.1145/2049662.2049663. · Zbl 1365.65123
[43] R. S. Dembo, S. C. Eisenstat, and T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982), pp. 400-408, https://doi.org/10.1137/0719025. · Zbl 0478.65030
[44] U. B. Desai and D. Pal, A transformation approach to stochastic model reduction, IEEE Trans. Automat. Control, 29 (1984), pp. 1097-1100, https://doi.org/10.1109/TAC.1984.1103438. · Zbl 0556.93057
[45] L. Dieci, Numerical integration of the differential Riccati equation and some related issues, SIAM J. Numer. Anal., 29 (1992), pp. 781-815, https://doi.org/10.1137/0729049. · Zbl 0768.65037
[46] V. Druskin and L. A. Knizhnerman, Extended Krylov subspaces: Approximation of the matrix square root and related functions, SIAM J. Matrix Anal. Appl., 19 (1998), pp. 755-771, https://doi.org/10.1137/S0895479895292400. · Zbl 0912.65022
[47] V. Druskin, L. A. Knizhnerman, and V. Simoncini, Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation, SIAM J. Numer. Anal., 49 (2011), pp. 1875-1898, https://doi.org/10.1137/100813257. · Zbl 1244.65060
[48] V. Druskin and V. Simoncini, Adaptive rational Krylov subspaces for large-scale dynamical systems, Systems Cont. Lett., 60 (2011), pp. 546-560, https://doi.org/10.1016/j.sysconle.2011.04.013. · Zbl 1236.93035
[49] V. Druskin, V. Simoncini, and M. Zaslavsky, Adaptive tangential interpolation in rational Krylov subspaces for MIMO dynamical systems, SIAM J. Matrix Anal. Appl., 35 (2014), pp. 476-498, https://doi.org/10.1137/120898784. · Zbl 1314.65085
[50] S. C. Eisenstat and H. F. Walker, Choosing the forcing terms in an inexact Newton method, SIAM J. Sci. Comput., 17 (1996), pp. 16-32, https://doi.org/10.1137/0917003. · Zbl 0845.65021
[51] H. C. Elman and M. W. Rostami, Efficient iterative algorithms for linear stability analysis of incompressible flows, IMA J. Numer. Anal., 36 (2016), pp. 296-316, https://doi.org/10.1093/imanum. · Zbl 1425.65052
[52] F. Feitzinger, T. Hylla, and E. W. Sachs, Inexact Kleinman-Newton method for Riccati equations, SIAM J. Matrix Anal. Appl., 31 (2009), pp. 272-288, https://doi.org/10.1137/070700978. · Zbl 1191.49033
[53] F. D. Freitas and A. S. Costa, Computationally efficient optimal control methods applied to power systems, in Proceedings of the 20th International Conference on Power Industry Computer Applications, IEEE, Washington, DC, 1997, pp. 287-294, https://doi.org/10.1109/PICA.1997.599416.
[54] A. Frommer, K. Lund, and D. B. Szyld, Block Krylov subspace methods for computing functions of matrices applied to multiple vectors, Electron. Trans. Numer. Anal., 47 (2017), pp. 100-126. · Zbl 1372.65138
[55] G. H. Golub and C. F. Van Loan, Matrix Computations, 4th ed, Johns Hopkins University Press, Baltimore, MD, 2013. · Zbl 1268.65037
[56] L. Grasedyck, Existence of a low rank or \(H\)-matrix approximant to the solution of a Sylvester equation, Numer. Linear Algebra Appl., 11 (2004), pp. 371-389, https://doi.org/10.1002/nla.366. · Zbl 1164.65381
[57] S. Güttel, Rational Krylov approximation of matrix functions: Numerical methods and optimal pole selection, GAMM-Mitt., 36 (2013), pp. 8-31, https://doi.org/10.1002/gamm.201310002. · Zbl 1292.65043
[58] C. He and V. Mehrmann, Stabilization of large linear systems, in Preprints of the European IEEE Workshop CMP’94 9Prague, 1994), L. Kulhavá, M. Kárný, and K. Warwick, eds., IEEE, Washington, DC, 1994, pp. 91-100.
[59] S. Hein, MPC-LQG-Based Optimal Control of Parabolic PDEs, Ph.D. thesis, TU Chemnitz, Chemnitz, Germany, 2009, http://archiv.tu-chemnitz.de/pub/2010/0013.
[60] M. Heinkenschloss, D. C. Sorensen, and K. Sun, Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations, SIAM J. Sci. Comput., 30 (2008), pp. 1038-1063, https://doi.org/10.1137/070681910. · Zbl 1216.76015
[61] M. Heyouni and K. Jbilou, An extended block Arnoldi algorithm for large-scale solutions of the continuous-time algebraic Riccati equation, Electron. Trans. Numer. Anal., 33 (2009), pp. 53-62, http://etna.mcs.kent.edu/volumes/2001-2010/vol33/abstract.php?vol=33&pages=53-62. · Zbl 1171.65035
[62] T. Hylla, Extension of Inexact Kleinman-Newton Methods to a General Monotonicity Preserving Convergence Theory, Dissertation, Universität Trier, Trier, Germany, 2011, http://ubt.opus.hbz-nrw.de/volltexte/2011/643.
[63] I. M. Jaimoukha and E. M. Kasenally, Krylov subspace methods for solving large Lyapunov equations, SIAM J. Numer. Anal., 31 (1994), pp. 227-251, https://doi.org/10.1137/0731012. · Zbl 0798.65060
[64] K. Jbilou, An Arnoldi based algorithm for large algebraic Riccati equations, Appl. Math. Lett., 19 (2006), pp. 437-444, https://doi.org/10.1016/j.aml.2005.07.001. · Zbl 1094.65038
[65] K. Jbilou, A. Messaoudi, and H. Sadok, Global FOM and GMRES algorithms for matrix equations, Appl. Numer. Math., 31 (1999), pp. 49-63, https://doi.org/10.1016/S0168-9274(98)00094-4. · Zbl 0935.65024
[66] E. A. Jonckheere and L. M. Silverman, A new set of invariants for linear systems-application to reduced order compensator design, IEEE Trans. Automat. Control, 28 (1983), pp. 953-964, https://doi.org/10.1109/TAC.1983.1103159. · Zbl 0524.93013
[67] T. Kailath, Some Chandrasekhar-type algorithms for quadratic regulators, in Proceedings of the 1972 IEEE Conference on Decision and Control and 11th Symposium on Adaptive Processes, IEEE, Washington, DC, 1972, pp. 219-223, https://doi.org/10.1109/CDC.1972.268990.
[68] D. Kleinman, On an iterative technique for Riccati equation computations, IEEE Trans. Automat. Control, 13 (1968), pp. 114-115, https://doi.org/10.1109/TAC.1968.1098829.
[69] L. Knizhnerman and V. Simoncini, Convergence analysis of the extended Krylov subspace method for the Lyapunov equation, Numer. Math., 118 (2011), pp. 567-586, https://doi.org/10.1007/s00211-011-0366-3. · Zbl 1230.65055
[70] L. A. Knizhnerman and V. Simoncini, A new investigation of the extended Krylov subspace method for matrix function evaluations, Numer. Linear Algebra Appl., 17 (2010), pp. 615-638, https://doi.org/10.1002/nla.652. · Zbl 1240.65154
[71] D. Kressner, P. Kürschner, and S. Massei, Low-rank updates and divide-and-conquer methods for quadratic matrix equations, Numer. Alg., (2019), pp. 1-25, https://doi.org/10.1007/s11075-019-00776-w.
[72] P. Kürschner, Efficient Low-Rank Solution of Large-Scale Matrix Equations, Ph.D. thesis, Otto von Guericke Universität, Magdeburg, Germany, 2016, http://hdl.handle.net/11858/00-001M-0000-0029-CE18-2.
[73] P. Kürschner and M. Freitag, Inexact Methods for the Low Rank Solution to Large Scale Lyapunov Equations, preprint, https://arxiv.org/abs/1809.06903, 2018.
[74] P. Lancaster and L. Rodman, Algebraic Riccati Equations, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. · Zbl 0836.15005
[75] N. Lang, H. Mena, and J. Saak, On the benefits of the \(LDL^T\) factorization for large-scale differential matrix equation solvers, Linear Algebra Appl., 480 (2015), pp. 44-71, https://doi.org/10.1016/j.laa.2015.04.006. · Zbl 1320.65110
[76] A. Lanzon, Y. Feng, and B. D. O. Anderson, An iterative algorithm to solve Algebraic Riccati Equations with an indefinite quadratic term, in 2007 European Control Conference (ECC), 2007, pp. 3033-3039.
[77] A. J. Laub, A Schur Method for Solving Algebraic Riccati Equations, IEEE Trans. Automat. Control, 24 (1979), pp. 913-921, https://doi.org/10.1109/TAC.1979.1102178. · Zbl 0424.65013
[78] J.-R. Li, Model reduction of large linear systems via low rank system Gramians, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 2000.
[79] J.-R. Li and J. White, Low rank solution of Lyapunov equations, SIAM J. Matrix Anal. Appl., 24 (2002), pp. 260-280, https://doi.org/10.1137/S0895479801384937. · Zbl 1016.65024
[80] T. Li, E. K. Chu, W. W. Lin, and P. C. Y. Weng, Solving large-scale continuous-time algebraic Riccati equations by doubling, J. Comput. Appl. Math., 237 (2013), pp. 373-383, https://doi.org/10.1016/j.cam.2012.06.006. · Zbl 1253.65063
[81] Y. Lin and V. Simoncini, A new subspace iteration method for the algebraic Riccati equation, Numer. Linear Algebra Appl., 22 (2015), pp. 26-47, https://doi.org/10.1002/nla.1936. · Zbl 1363.65076
[82] A. Locatelli, Optimal Control: An Introduction, Birkhäuser, Basel, 2001. · Zbl 1096.49500
[83] A. Massoudi, M. R. Opmeer, and T. Reis, Analysis of an iteration method for the algebraic Riccati equation, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 624-648, https://doi.org/10.1137/140985792. · Zbl 1339.15010
[84] V. Mehrmann and E. Tan, Defect Correction Methods for the Solution of Algebraic Riccati Equations, IEEE Trans. Automat. Control, 33 (1988), pp. 695-698, https://doi.org/10.1109/9.1282. · Zbl 0646.93024
[85] C. Moosmann, E. B. Rudnyi, A. Greiner, and J. G. Korvink, Model order reduction for linear convective thermal flow, in THERMINIC 2004, Sophia Antipolis, France, 2004, pp. 317-321.
[86] P. C. Opdenacker and E. A. Jonckheere, A contraction mapping preserving balanced reduction scheme and its infinity norm error bounds, IEEE Trans. Circuits Syst., 35 (1988), pp. 184-189, https://doi.org/10.1109/31.1720. · Zbl 0659.93013
[87] M. R. Opmeer, Decay of Hankel singular values of analytic control systems, Systems Control Lett., 59 (2010), pp. 635-638, https://doi.org/10.1016/j.sysconle.2010.07.009. · Zbl 1205.93075
[88] M. R. Opmeer, Decay of singular values of the Gramians of infinite-dimensional systems, in 2015 European Control Conference (ECC), 2015, pp. 1183-1188, https://doi.org/10.1109/ECC.2015.7330700.
[89] T. Penzl, A cyclic low-rank Smith method for large sparse Lyapunov equations, SIAM J. Sci. Comput., 21 (2000), pp. 1401-1418, https://doi.org/10.1137/S1064827598347666. · Zbl 0958.65052
[90] A. Ruhe, Rational Krylov sequence methods for eigenvalue computation, Linear Algebra Appl., 58 (1984), pp. 391-405, https://doi.org/10.1016/0024-3795(84)90221-0. · Zbl 0554.65025
[91] A. Ruhe, The Rational Krylov algorithm for nonsymmetric Eigenvalue problems. III: Complex shifts for real matrices, BIT, 34 (1994), pp. 165-176, https://doi.org/10.1007/BF01935024. · Zbl 0810.65032
[92] D. L. Russell, Mathematics of Finite-Dimensional Control Systems, Lect. Notes Pure Appl. Math. 43, Marcel Dekker, New York, 1979. · Zbl 0408.93002
[93] Y. Saad, Numerical solution of large Lyapunov equation, in Signal Processing, Scattering, Operator Theory and Numerical Methods, M. A. Kaashoek, J. H. van Schuppen, and A. C. M. Ran, eds., Progr. Systems Control Theory 5, Birkhäuser, Basel, 1990, pp. 503-511.
[94] J. Saak, Efficient Numerical Solution of Large Scale Algebraic Matrix Equations in PDE Control and Model Order Reduction, Ph.D. thesis, TU Chemnitz, Chemnitz, Germany, 2009, http://nbn-resolving.de/urn:nbn:de:bsz:ch1-200901642.
[95] J. Saak, M. Köhler, and P. Benner, M-M.E.S.S.-1.0.1-The Matrix Equations Sparse Solvers Library, 2016, https://doi.org/10.5281/zenodo.50575; see also https://www.mpi-magdeburg.mpg.de/projects/mess.
[96] J. Saak, P. Kürscher, Z. Bujanović, and P. Benner, Collected MATLAB solvers for large-scale AREs, v. 1.0, Zenodo, https://doi.org/10.5281/zenodo.3662519.
[97] J. Sabino, Solution of Large-Scale Lyapunov Equations via the Block Modified Smith Method, Ph.D. thesis, Rice University, Houston, TX, 2007, http://www.caam.rice.edu/tech_reports/2006/TR06-08.pdf.
[98] M. Schmidt, Systematic Discretization of Input/Output Maps and Other Contributions to the Control of Distributed Parameter Systems, Ph.D. thesis, Technische Universität Berlin, Berlin, Germany, 2007.
[99] V. Sima, Algorithms for Linear-Quadratic Optimization, Pure Appl. Math. 200, Marcel Dekker, New York, 1996. · Zbl 0863.65038
[100] V. Simoncini, A new iterative method for solving large-scale Lyapunov matrix equations, SIAM J. Sci. Comput., 29 (2007), pp. 1268-1288, https://doi.org/10.1137/06066120X. · Zbl 1146.65038
[101] V. Simoncini, Analysis of the rational Krylov subspace projection method for large-scale algebraic Riccati equations, SIAM J. Matrix Anal. Appl., 37 (2016), pp. 1655-1674, https://doi.org/10.1137/16M1059382. · Zbl 06655499
[102] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58 (2016), pp. 377-441, https://doi.org/10.1137/130912839. · Zbl 1386.65124
[103] V. Simoncini, D. Szyld, and M. Monsalve, On two numerical methods for the solution of large-scale algebraic Riccati equations, IMA J. Numer. Anal., 34 (2014), pp. 904-920, https://doi.org/10.1093/imanum. · Zbl 1298.65083
[104] T. Stykel and V. Simoncini, Krylov subspace methods for projected Lyapunov equations, Appl. Numer. Math., 62 (2012), pp. 35-50, https://doi.org/10.1016/j.apnum.2011.09.007. · Zbl 1258.65044
[105] K. Sun, Model Order Reduction and Domain Decomposition for Large-Scale Dynamical Systems, Ph.D. thesis, Rice University, Houston, TX, 2008, http://search.proquest.com/docview/304507831.
[106] The MORwiki Community, MORwiki: Model Order Reduction Wiki, http://modelreduction.org.
[107] A. Varga, On stabilization methods of descriptor systems, Systems Control Lett., 24 (1995), pp. 133-138, https://doi.org/10.1016/0167-6911(94)00017-P. · Zbl 0877.93092
[108] E. L. Wachspress, The ADI Model Problem, Springer, New York, 2013, https://doi.org/10.1007/978-1-4614-5122-8. · Zbl 1277.65022
[109] H. Weichelt, Numerical Aspects of Flow Stabilization by Riccati Feedback, Ph.D. thesis, Otto von Guericke Universität, Magdeburg, Germany, 2016, http://nbn-resolving.de/urn:nbn:de:gbv:ma9:1-8693.
[110] T. Wolf, \( \mathcal{H}_2\) Pseudo-Optimal Model Order Reduction, Ph.D. thesis, Technische Universität München, München, Germany, 2015, https://d-nb.info/1064075568/34.
[111] N. Wong and V. Balakrishnan, Fast positive-real balanced truncation via quadratic alternating direction implicit iteration, IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 26 (2007), pp. 1725-1731, https://doi.org/10.1109/TCAD.2007.895617.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.