×

zbMATH — the first resource for mathematics

An adaptive bubble method for structural shape and topology optimization. (English) Zbl 1441.74153
Summary: An adaptive bubble method is presented in this paper for shape and topology optimization design of stiffest structures and compliant mechanisms. With the aim of overcoming the shortcomings of the traditional bubble method and retaining all its advantages, the proposed method achieves a comprehensive integration of topological derivative, implicit model and fixed grid. The topological derivative is devoted to the iterative positioning of new holes inside the design domain. Each of the holes is described by smoothly deformable implicit curve (SDIC) characterized by very few parameters and high deformation capacity. Since the structural model could be implicitly constructed using the SDICs, the finite cell method (FCM) is applied to facilitate the mechanical analysis of the implicit model with fixed Eulerian mesh. Two new concepts, i.e., the topological derivative threshold and the total influence region of inserted holes, are further introduced to adaptively control the numbers and positions of new holes so that the numerical stability of topology optimization could be well guaranteed. It is shown that the adaptive bubble method no longer needs the mesh updating process and can perform the merging and separating operations of holes straightforwardly. Numerical examples concerning the stiffest structure design and the compliant mechanism synthesis are tested to demonstrate the universality of the present method, especially its capability of being integrated within CAD systems directly without post-processing.
MSC:
74P15 Topological methods for optimization problems in solid mechanics
Software:
BOSS-Quattro; top.m
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Bendsoe, M. P.; Sigmund, O., Topology Optimization: Theory, Methods and Applications (2003), Springer-Verlag · Zbl 1059.74001
[2] Zhang, W. H.; Zhu, J. H.; Gao, T., Topology Optimization in Engineering Structure Design (2017), ISTE Press-Elsevier
[3] Zhu, J. H.; Zhang, W. H.; Xia, L., Topology optimization in aircraft and aerospace structures design, Arch. Comput. Methods Eng., 23, 4, 595-622 (2016) · Zbl 1360.74128
[4] Bennett, J.; Botkin, M., Structural shape optimization with geometric description and adaptive mesh refinement, AIAA J., 23, 3, 458-464 (1985)
[5] Wang, Z. P.; Poh, L. H.; Dirrenberger, J.; Zhu, Y. L.; Forest, S., Isogeometric shape optimization of smoothed petal auxetic structures via computational periodic homogenization, Comput. Methods Appl. Mech. Engrg., 323, 250-271 (2017)
[6] Wall, W. A.; Frenzel, M. A.; Cyron, C., Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Engrg., 197, 33-40, 2976-2988 (2008) · Zbl 1194.74263
[7] Wang, D.; Zhang, W. H., A bispace parameterization method for shape optimization of thin-walled curved shell structures with openings, Internat. J. Numer. Methods Engrg., 90, 13, 1598-1617 (2012) · Zbl 1246.74041
[8] Bendsoe, M. P.; Sigmund, O., Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 9-10, 635-654 (1999) · Zbl 0957.74037
[9] Sigmund, O.; Maute, K., Topology optimization approaches: A comparative review, Struct. Multidiscip. Optim., 48, 6, 1031-1055 (2013)
[10] Deaton, J. D.; Grandhi, R. V., A survey of structural and multidisciplinary continuum topology optimization: post 2000, Struct. Multidiscip. Optim., 49, 1, 1-38 (2014)
[11] Xia, L.; Xia, Q.; Huang, X. D.; Xie, Y. M., Bi-directional evolutionary structural optimization on advanced structures and materials: A comprehensive review, Arch. Comput. Methods Eng., 25, 2, 437-478 (2018) · Zbl 1392.74074
[12] Wang, M. Y.; Wang, X. M.; Guo, D. M., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 1-2, 227-246 (2003) · Zbl 1083.74573
[13] Allaire, G.; Gournay, F. D.; Jouve, F.; Toader, A. M., Structural optimization using topological and shape sensitivity via a level set method, Control Cybernet., 34, 1, 59-80 (2005) · Zbl 1167.49324
[14] Van Dijk, N. P.; Maute, K.; Langelaar, M.; Van Keulen, F., Level-set methods for structural topology optimization: a review, Struct. Multidiscip. Optim., 48, 3, 437-472 (2013)
[15] Luo, Z.; Wang, M. Y.; Wang, S. Y.; Wei, P., A level set-based parameterization method for structural shape and topology optimization, Internat. J. Numer. Methods Engrg., 76, 1, 1-26 (2008) · Zbl 1158.74443
[16] Wei, P.; Li, Z. Y.; Li, X. P.; Wang, M. Y., An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions, Struct. Multidiscip. Optim., 58, 2, 831-849 (2018)
[17] Cai, S. Y.; Zhang, W. H., Stress constrained topology optimization with free-form design domains, Comput. Methods Appl. Mech. Engrg., 289, 267-290 (2015) · Zbl 1423.74740
[18] Wang, Y. G.; Kang, Z., A velocity field level set method for shape and topology optimization, Internat. J. Numer. Methods Engrg., 115, 11, 1315-1336 (2018)
[19] Eschenauer, H. A.; Kobelev, V. V.; Schumacher, A., Bubble method for topology and shape optimization of structures, Struct. Optim., 8, 1, 42-51 (1994)
[20] Zhou, Y.; Zhang, W. H.; Zhu, J. H.; Xu, Z., Feature-driven topology optimization method with signed distance function, Comput. Methods Appl. Mech. Engrg., 310, 1-32 (2016)
[21] Zhang, W. H.; Zhou, Y.; Zhu, J. H., A comprehensive study of feature definitions with solids and voids for topology optimization, Comput. Methods Appl. Mech. Engrg., 325, 289-313 (2017)
[22] Zhu, J. H.; Zhang, W. H.; Beckers, P., Integrated layout design of multi-component system, Int. J. Numer. Methods Eng., 78, 6, 631-651 (2010) · Zbl 1183.74215
[23] Xia, L.; Zhu, J. H.; Zhang, W. H.; Breitkopf, P., An implicit model for the integrated optimization of component layout and structure topology, Comput. Methods Appl. Mech. Engrg., 257, 87-102 (2013) · Zbl 1286.74080
[24] Zhang, J.; Zhang, W. H.; Zhu, J. H.; Xia, L., Integrated layout design of multi-component systems using XFEM and analytical sensitivity analysis, Comput. Methods Appl. Mech. Engrg., 245-246, 4, 75-89 (2012) · Zbl 1354.74310
[25] Sokolowski, J.; Zochowski, A., On the topological derivative in shape optimization, SIAM J. Control Optim., 37, 4, 1251-1272 (1999) · Zbl 0940.49026
[26] Novotny, A. A.; Feijoo, R. A.; Taroco, E.; Padra, C., Topological sensitivity analysis, Comput. Methods Appl. Mech. Engrg., 192, 7-8, 803-829 (2003) · Zbl 1025.74025
[27] Novotny, A. A.; Sokołowski, J., Topological Derivatives in Shape Optimization (2013), Springer-Verlag · Zbl 1276.35002
[28] Zhou, L.; Kambhamettu, C., Extending superquadrics with exponent functions: Modeling and reconstruction, Graph. Models, 63, 1, 1-20 (2001) · Zbl 1011.68576
[29] Parvizian, J.; Düster, A.; Rank, E., Finite cell method, Comput. Mech., 41, 1, 121-133 (2007) · Zbl 1162.74506
[30] Düster, A.; Parvizian, J.; Yang, Z.; Rank, E., The finite cell method for three-dimensional problems of solid mechanics, Comput. Methods Appl. Mech. Engrg., 197, 45, 3768-3782 (2008) · Zbl 1194.74517
[31] Schillinger, D.; Ruess, M., The finite cell method: A review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch. Comput. Methods Eng., 22, 3, 391-455 (2015) · Zbl 1348.65056
[32] Luo, J. Z.; Luo, Z.; Chen, S. K.; Tong, L. Y.; Wang, M. Y., A new level set method for systematic design of hinge-free compliant mechanisms, Comput. Methods Appl. Mech. Engrg., 198, 2, 318-331 (2008) · Zbl 1194.74272
[33] Zhu, B. L.; Zhang, X. M.; Fatikow, S., A multi-objective method of hinge-free compliant mechanism optimization, Struct. Multidiscip. Optim., 49, 3, 431-440 (2014)
[34] Zhu, B. L.; Zhang, X. M., A new level set method for topology optimization of distributed compliant mechanisms, Internat. J. Numer. Methods Engrg., 91, 8, 843-871 (2012)
[35] Krishnakumar, A.; Suresh, K., Hinge-free compliant mechanism design via the topological level-set, ASME J. Mech. Des., 137, 3, Article 031406 pp. (2015)
[36] Sigmund, O., On the design of compliant mechanisms using topology optimization, J. Struct. Mech., 25, 4, 493-524 (1997)
[37] Zhang, W. H.; Zhao, L. Y.; Gao, T.; Cai, S. Y., Topology optimization with closed B-splines and Boolean operations, Comput. Methods Appl. Mech. Engrg., 315, 652-670 (2017)
[38] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method, Comput. Methods Appl. Mech. Engrg., 199, 41, 2680-2686 (2010) · Zbl 1231.65207
[39] Burman, E.; Hansbo, P., Fictitious domain finite element methods using cut elements: II. A stabilized Nitsche method, Appl. Numer. Math., 62, 4, 328-341 (2012) · Zbl 1316.65099
[40] Cai, S. Y.; Zhang, W. H.; Zhu, J. H.; Gao, T., Stress constrained shape and topology optimization with fixed mesh: A B-spline finite cell method combined with level set function, Comput. Methods Appl. Mech. Engrg., 278, 361-387 (2014) · Zbl 1423.74741
[41] Ruess, M.; Schillinger, D.; Bazilevs, Y.; Varduhn, V.; Rank, E., Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS geometries on the basis of the finite cell method, Internat. J. Numer. Methods Engrg., 95, 10, 811-846 (2013) · Zbl 1352.65643
[42] Zhang, W. H.; Zhao, L. Y., Exact imposition of inhomogeneous Dirichlet boundary conditions based on weighted finite cell method and level-set function, Comput. Methods Appl. Mech. Engrg., 307, 316-338 (2016)
[43] Piegl, L.; Tiller, W., The NURBS Book (1997), Springer-Verlag · Zbl 0868.68106
[44] K. Svanberg, A globally convergent version of MMA without linesearch, in: Proceedings of the First World Congress of Structural and Multidisciplinary Optimization, Goslar, Germany, 1995, pp. 9-16.
[45] Radovcic, Y.; Remouchamps, A., BOSS QUATTRO: an open system for parametric design, Struct. Multidiscip. Optim., 23, 2, 140-152 (2002)
[46] Sigmund, O., A 99 line topology optimization code written in Matlab, Struct. Multidiscip. Optim., 21, 2, 120-127 (2001)
[47] Huang, X. D.; Xie, Y. M., Evolutionary Topology Optimization of Continuum Structures: Methods and Applications (2010), Wiley
[48] Schillinger, D.; Ruess, M., The finite cell method: A review in the context of higher-order structural analysis of CAD and image-based geometric models, Arch. Comput. Methods Eng., 22, 3, 391-455 (2015) · Zbl 1348.65056
[49] Zhou, L.; Zhang, W. H., Topology optimization method with elimination of enclosed voids, Struct. Multidiscip. Optim., 60, 1, 117-136 (2019)
[50] Xia, L.; Breitkopf, P., Recent advances on topology optimization of multi-scale nonlinear structures, Arch. Comput. Methods Eng., 24, 2, 227-249 (2017) · Zbl 1364.74086
[51] Wang, Y. J.; Xu, H.; Pasini, D., Multiscale isogeometric topology optimization for lattice materials, Comput. Methods Appl. Mech. Engrg., 316, 568-585 (2017)
[52] Wu, Z. J.; Xia, L.; Wang, S. T.; Shi, T. L., Topology optimization of hierarchical lattice structures with substructuring, Comput. Methods Appl. Mech. Engrg., 345, 602-617 (2019)
[53] Xu, Y. J.; Zhu, J. H.; Wu, Z.; Gao, Y. F.; Zhao, Y. B.; Zhang, W. H., A review on the design of laminated composite structures: constant and variable stiffness design and topology optimization, Adv. Compos. Hybrid Mater., 1, 3, 460-477 (2018)
[54] Hou, Y. L.; Tie, Y.; Li, C.; Sapanathan, T.; Rachik, M., Low-velocity impact behaviors of repaired CFRP laminates: Effect of impact location and external patch configurations, Composites B, 163, 669-680 (2019)
[55] Da, D. C.; Cui, X. Y.; Long, K.; Li, G. Y., Concurrent topological design of composite structures and the underlying multi-phase materials, Comput. Struct., 179, 1-14 (2017)
[56] Xia, Q.; Shi, T. L., A cascadic multilevel optimization algorithm for the design of composite structures with curvilinear fiber based on Shepard interpolation, Compos. Struct., 188, 209-219 (2018)
[57] Tang, L.; Gao, T.; Song, L. L.; Meng, L.; Zhang, C. Q.; Zhang, W. H., Topology optimization of nonlinear heat conduction problems involving large temperature gradient, Comput. Methods Appl. Mech. Engrg., 357, Article 112600 pp. (2019)
[58] Gao, T.; Zhang, W. H.; Zhu, J. H.; Xu, Y. J.; Bassir, D. H., Topology optimization of heat conduction problem involving design-dependent heat load effect, Finite Elem. Anal. Des., 44, 14, 805-813 (2008)
[59] Liu, H.; Zhang, W.; Gao, T., A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations, Struct. Multidiscip. Optim., 51, 6, 1321-1333 (2015)
[60] Long, K.; Wang, X.; Liu, H. L., Stress-constrained topology optimization of continuum structures subject to harmonic force excitation using sequential quadratic programming, Struct. Multidiscip. Optim., 59, 5, 1747-1759 (2019)
[61] Zhang, W. H.; Zhou, L., Topology optimization of self-supporting structures with polygon features for additive manufacturing, Comput. Methods Appl. Mech. Engrg., 334, 56-78 (2018)
[62] Yang, K. K.; Zhu, J. H.; Wang, C.; Jia, D. S.; Song, L. L.; Zhang, W. H., Experimental validation of 3D printed material behaviors and their influence on the structural topology design, Comput. Mech., 61, 5, 581-598 (2018) · Zbl 06965813
[63] Meng, L.; Zhang, W. H.; Quan, D. L.; Shi, G. H.; Tang, L.; Hou, Y. L.; Breikopf, P.; Zhu, J. H.; Gao, T., From topology optimization design to additive manufacturing: Today’s success and tomorrow’s roadmap, Arch. Comput. Methods Eng. (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.