Hosono, Shinobu; Takagi, Hiromichi Derived categories of Artin-Mumford double solids. (English) Zbl 1475.14033 Kyoto J. Math. 60, No. 1, 107-177 (2020). There are at least two interesting varieties associated to a web of quadrics \(W\): the Reye congruence \(X\), which is an Enriques surface, and the Artin-Mumford quartic double solid \(Y\), which is a Fano 3-fold, famous for being unirational, but not rational.Let \(V=\mathbb C^4\) and let \(\mathbb P^9\cong \mathbb P(S^2V^*)\) be the space of quadric surfaces. A web of quadrics is a three-dimensional linear subspace \(\mathbb P^3\cong W\subset \mathbb P(S^2V^*)\) satisfying some genericity assumptions; for example, we assume that \(W\) does not contain any quadrics of rank \(1\).The Artin-Mumford quartic double solid \(Y\) is then defined as the double cover \(Y\to W\) branched over the locus of singular quadrics, which is a quartic in \(W\cong \mathbb P^3\). Note that the variety parametrising lines in a given quadric surface \(Q\) has two connected components if \(Q\) is smooth, but only one component if \(Q\) is singular. Hence, one can regard \(Y\) as the space of pairs \((K,Q)\) consisting of a quadric \(Q\) in \(W\) and a component \(K\) of the variety of lines on \(Q\). The Artin-Mumford quartic double solid is smooth except for 10 ordinary double points. We denote the resolution given by blowing up these points by \(\widetilde Y\to Y\).The Reye congruence \(X\subset \operatorname*{Gr}(2,V)\) is the locus of lines in \(\mathbb P(V)\) which are contained in at least two quadrics of \(W\).The varieties \(X\) and \(Y\) are related by the correspondence \[ Z:=\bigl\{(\ell,Q)\mid \ell\subset Q\bigr\}\subset \operatorname*{Gr}(2,V)\times W\,. \] Indeed, there are maps \(Z\to \operatorname*{Gr}(2,V)\), \((\ell,Q)\mapsto \ell\) and \(Z\to Y\), \((\ell,Q)\mapsto(K_\ell,Q)\) where \(K_\ell\) is the component of the variety of lines on \(Q\) containing \([\ell]\).When mathematicians interested in derived categories recognize two interesting varieties related by a correspondence, they often try to relate the derived categories of coherent sheaves using Fourier-Mukai functors associated to the correspondence.A first indication that there might indeed be an strong relation between \(\mathcal D^b(\widetilde Y)\) and \(\mathcal D^b(X)\) was that both contain completely orthogonal exceptional collections of length 10. On \(\widetilde Y\), this exceptional collection is given by the structure sheaves of the fibres over the double points of \(Y\), while \(X\) has such a collection consisting of certain line bundles; see [S.Zube, Math.Notes 61, No.6, 693–699 (1997; Zbl 0933.14023)].Going much further, Ingalls and Kuznetsov [Math.Ann.361, No. 1–2, 107–133 (2015; Zbl 1408.14069)] described full semi-orthogonal decompositions of \(\mathcal D^b(X)\) and \(\mathcal D^b(\widetilde Y)\), such that all components of the decomposition of \(\mathcal D^b(X)\) also show up in the decomposition of \(\mathcal D^b(\widetilde Y)\). This led them to conjecture that \(\mathcal D^b(X)\) embedds as a whole into \(\mathcal D^b(\widetilde Y)\), which means that there should be a fully faithful Fourier–Mukai functor \[ \mathcal D^b(X)\hookrightarrow \mathcal D^b(\widetilde Y)\,. \] In the paper under review, the authors prove this conjecture under a further genericity assumption on \(W\), namely that the locus of singular quadrics in \(W\) does not contain a line.As one would expect, the Fourier-Mukai kernel of the fully faithful embedding \(\mathcal D^b(X)\hookrightarrow\mathcal D^b(\widetilde Y)\) is related to the correspondence \(Z\), or rather its pull back \(\widetilde Z=Z\times_Y \widetilde Y\). However, the construction is much more involved than just taking the structure or ideal sheaf. Instead, it is a family of rank 2 reflective sheaves on \(\widetilde Y\) parametrized by \(X\). Reviewer: Andreas Krug (Hannover) Cited in 1 ReviewCited in 4 Documents MSC: 14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry 14J45 Fano varieties 14J28 \(K3\) surfaces and Enriques surfaces Keywords:Artin-Mumford double solid; Enriques surface; Reye congruence; homological projective duality Citations:Zbl 0933.14023; Zbl 1408.14069 PDFBibTeX XMLCite \textit{S. Hosono} and \textit{H. Takagi}, Kyoto J. Math. 60, No. 1, 107--177 (2020; Zbl 1475.14033) Full Text: DOI arXiv Euclid References: [1] T. Ando, On extremal rays of the higher-dimensional varieties, Invent. Math. 81 (1985), no. 2, 347-357. · Zbl 0554.14001 · doi:10.1007/BF01389057 [2] M. Artin and D. Mumford, Some elementary examples of unirational varieties which are not rational, Proc. Lond. Math. Soc. (3) 25 (1972), 75-95. · Zbl 0244.14017 · doi:10.1112/plms/s3-25.1.75 [3] A. Beauville, “Variétés rationnelles et unirationnelles” in Algebraic Geometry—Open Problems (Ravello, 1982), Lecture Notes in Math. 997, Springer, Berlin, 1983, 16-33. · Zbl 0517.14021 [4] A. Beauville, Complex Algebraic Surfaces, 2nd ed., London Math. Soc. Stud. Texts 34, Cambridge Univ. Press, Cambridge, 1996. · Zbl 0849.14014 [5] M. Bernardara, M. Bolognesi, and D. Faenzi, Homological projective duality for determinantal varieties, Adv. Math. 296 (2016), 181-209. · Zbl 1362.14020 · doi:10.1016/j.aim.2016.04.003 [6] A. Bondal, Representations of associative algebras and coherent sheaves (in Russian), Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), no. 1, 25-44; English translation in Math. USSR-Izv. 34 (1990), no. 1, 23-42. · Zbl 0692.18002 [7] A. Bondal and D. Orlov, Semiorthogonal decomposition for algebraic varieties, preprint, arXiv:alg-geom/9506012v1. [8] L. Borisov and A. Caldararu, The Pfaffian-Grassmannian derived equivalence, J. Algebraic Geom. 18 (2009), no. 2, 201-222. · Zbl 1181.14020 · doi:10.1090/S1056-3911-08-00496-7 [9] T. Bridgeland, Equivalences of triangulated categories and Fourier-Mukai transforms, Bull. Lond. Math. Soc. 31 (1999), no. 1, 25-34. · Zbl 0937.18012 · doi:10.1112/S0024609398004998 [10] W. Bruns, and J. Herzog, Cohen-Macaulay Rings, Cambridge Stud. Adv. Math. 39, Cambridge Univ. Press, Cambridge, 1993. · Zbl 0788.13005 [11] F. R. Cossec, Reye congruences, Trans. Amer. Math. Soc. 280 (1983), no. 2, 737-751. · Zbl 0541.14034 · doi:10.1090/S0002-9947-1983-0716848-4 [12] F. R. Cossec and I. V. Dolgachev, Enriques Surfaces, I, Progr. Math. 76, Birkhäuser Boston, Boston, 1989. · Zbl 0665.14017 [13] S. Endraß, On the divisor class group of double solids, Manuscripta Math. 99 (1999), no. 3, 341-358. · Zbl 0970.14006 [14] G. Fano, Nuove ricerche sulle congruenze di rette del \(3^o\) ordine prive di linea singolare, Atti R. Acc. Sci. Torino 50 (1901), 1-79. · JFM 33.0685.02 [15] G. Fano, Superficie algebriche di genere zero e bigenere uno e loro casi particolari, Rend. Circ. Mat. Palermo 29 (1910), 98-118. · JFM 41.0709.03 · doi:10.1007/BF03014062 [16] G. Fano, Sulle varietà algebriche a tre dimensioni le cui sezioni iperpiane sono superficie di genere zero e bigenere uno, Mem. Soc. It. d. Scienze (3) 24 (1938), 41-66. · Zbl 0022.07702 [17] W. Fulton and J. Harris, Representation Theory, Grad. Texts in Math. 129, Springer, New York, 1991. · Zbl 0744.22001 [18] R. Hartshorne, Stable reflexive sheaves, Math. Ann. 254 (1980), no. 2, 121-176. · Zbl 0431.14004 · doi:10.1007/BF01467074 [19] S. Hosono and H. Takagi, Double quintic symmetroids, Reye congruences, and their derived equivalence, J. Differential Geom. 104 (2016), no. 3, 443-497. · Zbl 1364.32018 · doi:10.4310/jdg/1478138549 [20] S. Hosono and H. Takagi, Geometry of symmetric determinantal loci, preprint, arXiv:1508.01995v1 [math.AG]. [21] S. Hosono and H. Takagi, Towards homological projective duality for \({{\mathsf{S}}}^2\mathbb{P}^3\) and \({{\mathsf{S}}}^2\mathbb{P}^4 \), Adv. Math. 317 (2017), 371-409. · Zbl 1400.14054 · doi:10.1016/j.aim.2017.06.039 [22] D. Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry, Oxford Math. Monogr., Oxford Univ. Press, Oxford, 2006. · Zbl 1095.14002 [23] D. Huybrechts and M. Lehn, The Geometry of Moduli Spaces of Sheaves, Asp. of Math. E31, Vieweg, Braunschweig, 1997. · Zbl 0872.14002 [24] A. Iliev, L. Katzarkov, and V. Przyjalkowski, Double solids, categories and non-rationality, Proc. Edinb. Math. Soc. (2) 57 (2014), no. 1, 145-173. · Zbl 1303.14026 · doi:10.1017/S0013091513000898 [25] C. Ingalls and A. Kuznetsov, On nodal Enriques surfaces and quartic double solids, Math. Ann. 361 (2015), no. 1-2, 107-133. · Zbl 1408.14069 · doi:10.1007/s00208-014-1066-y [26] Y. Kawamata, K. Matsuda, and K. Matsuki, “Introduction to the minimal model problem” in Algebraic Geometry (Sendai, 1985), Adv. Stud. Pure Math. 10, North-Holland, Amsterdam, 1987, 283-360. · Zbl 0672.14006 [27] S. A. Kuleshov and D. O. Orlov, Exceptional sheaves on del Pezzo surfaces (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), no. 3, 53-87; English translation in Russian Acad. Sci. Izv. Math. 44 (1995), no. 3, 479-513. · Zbl 0842.14009 [28] A. Kuznetsov, Derived categories of the Fano threefolds \(V_{12}\) (in Russian), Mat. Zametki 78 (2005), no. 4, 579-594; English translation in Math. Notes 78 (2005), no. 3-4, 537-550. · Zbl 1111.14038 [29] A. Kuznetsov, Homological projective duality, Publ. Math. Inst. Hautes Études Sci. 105 (2007), 157-220. · Zbl 1131.14017 · doi:10.1007/s10240-007-0006-8 [30] A. Kuznetsov, Derived categories of quadric fibrations and intersections of quadrics, Adv. Math. 218 (2008), no. 5, 1340-1369. · Zbl 1168.14012 · doi:10.1016/j.aim.2008.03.007 [31] A. Kuznetsov, Lefschetz decompositions and categorical resolutions of singularities, Selecta Math. (N.S.) 13 (2008), no. 4, 661-696. · Zbl 1156.18006 · doi:10.1007/s00029-008-0052-1 [32] A. Kuznetsov, Scheme of lines on a family of \(2\)-dimensional quadrics: Geometry and derived category, Math. Z. 276 (2014), no. 3-4, 655-672. · Zbl 1295.14018 · doi:10.1007/s00209-013-1217-y [33] A. Kuznetsov, Homological projective duality for Grassmannians of lines, preprint, arXiv:math/0610957v1 [math.AG]. [34] H. Matsumura, Commutative Ring Theory, 2nd ed., Cambridge Stud. Adv. Math. 8, Cambridge Univ. Press, Cambridge, 1989. · Zbl 0666.13002 [35] D. O. Orlov, Projective bundles, monoidal transformations, and derived categories of coherent sheaves (in Russian), Izv. Ross. Akad. Nauk Ser. Mat. 56 (1992), no. 4, 852-862; English translation in Russian Acad. Sci. Izv. Math. 41 (1993), no. 1, 133-141. · Zbl 0798.14007 [36] D. O. Orlov, Derived categories of coherent sheaves, and motives (in Russian), Uspekhi Mat. Nauk 60 (2005), no. 6 (366), 231-232; English translation in Russian Math. Surveys 60 (2005), no. 6, 1242-1244. · Zbl 1146.18302 · doi:10.1070/RM2005v060n06ABEH004292 [37] T. Reye, Die Geometrie der Lage, 2nd ed., Baumgätner, Leipzig, 1882. · JFM 24.0582.04 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.