×

zbMATH — the first resource for mathematics

Better paracoherent answer sets with less resources. (English) Zbl 1434.68067
Summary: Answer Set Programming (ASP) is a well-established formalism for logic programming. Problem solving in ASP requires to write an ASP program whose answers sets correspond to solutions. Albeit the non-existence of answer sets for some ASP programs can be considered as a modeling feature, it turns out to be a weakness in many other cases, and especially for query answering. Paracoherent answer set semantics extend the classical semantics of ASP to draw meaningful conclusions also from incoherent programs, with the result of increasing the range of applications of ASP. State of the art implementations of paracoherent ASP adopt the semi-equilibrium semantics, but cannot be lifted straightforwardly to compute efficiently the (better) split semi-equilibrium semantics that discards undesirable semi-equilibrium models. In this paper an efficient evaluation technique for computing a split semi-equilibrium model is presented. An experiment on hard benchmarks shows that better paracoherent answer sets can be computed consuming less computational resources than existing methods.
MSC:
68N17 Logic programming
68Q55 Semantics in the theory of computing
Software:
clasp; Clingo; DLV2; WASP
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Alcântara, J., Damásio, C. V., and Pereira, L. M.2005. An encompassing framework for paraconsistent logic programs. Journal of Applied Logic 3, 1, 67-95. · Zbl 1063.03015
[2] Alviano, M.2018. Query answering in propositional circumscription. In Proceedings of the International Conference on Artificial Intelligence (IJCAI). ijcai.org, 1669-1675.
[3] Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., and Ricca, F.2019. Evaluation of disjunctive programs in WASP. In Proceedings of the International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR). Lecture Notes in Computer Science, vol. 11481. Springer, 241-255. · Zbl 07115978
[4] Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F., Veltri, P., and Zangari, J.2017. The ASP system DLV2. In Proceedings of the International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR). Lecture Notes in Computer Science, vol. 10377. Springer, 215-221. · Zbl 06769663
[5] Alviano, M. and Dodaro, C.2016. Anytime answer set optimization via unsatisfiable core shrinking. Theory and Practice of Logic Programming 16, 5-6, 533-551. · Zbl 1379.68033
[6] Alviano, M., Dodaro, C., Leone, N., and Ricca, F.2015. Advances in WASP. In Proceedings of the International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR). Lecture Notes in Computer Science. 40-54. · Zbl 06504220
[7] Amendola, G., Dodaro, C., Faber, W., Leone, N., and Ricca, F.2017. On the computation of paracoherent answer sets. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). 1034-1040.
[8] Amendola, G., Dodaro, C., Faber, W., and Ricca, F.2018. Externally supported models for efficient computation of paracoherent answer sets. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). AAAI Press, 1720-1727.
[9] Amendola, G., Eiter, T., Fink, M., Leone, N., and Moura, J.2016. Semi-equilibrium models for paracoherent answer set programs. Artificial Intelligence 234, 219-271. · Zbl 1351.68259
[10] Angiulli, F., Ben-Eliyahu, R., Fassetti, F., and Palopoli, L.2014. On the tractability of minimal model computation for some CNF theories. Artificial Intelligence 210, 56-77. · Zbl 1334.68205
[11] Arenas, M., Bertossi, L. E., and Chomicki, J.2003. Answer sets for consistent query answering in inconsistent databases. Theory and Practice of Logic Programming 3, 4-5, 393-424. · Zbl 1079.68026
[12] Balduccini, M. and Gelfond, M.2003. Logic programs with consistency-restoring rules. In Proceedings of the International Symposium on Logical Formalization of Commonsense Reasoning, AAAI Spring Symposium Series. Vol. 102. 9-18.
[13] Balduccini, M., Gelfond, M., Watson, R., and Nogueira, M.2001. The usa-advisor: A case study in answer set planning. In Proceedings of the International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR). Lecture Notes in Computer Science, vol. 2173. Springer, 439-442. · Zbl 1010.68800
[14] Baral, C.2003. Knowledge Representation, Reasoning, and Declarative Problem Solving. Cambridge University Press, New York, NY, USA. · Zbl 1056.68139
[15] Brewka, G., Eiter, T., and Truszczynski, M.2011. Answer set programming at a glance. Communications of the ACM 54, 12, 92-103.
[16] Bry, F. and Yahya, A. H.2000. Positive unit hyperresolution tableaux and their application to minimal model generation. Journal of Automated Reasoning 25, 1, 35-82. · Zbl 0960.03006
[17] Buccafurri, F., Leone, N., and Rullo, P.2000. Enhancing disjunctive datalog by constraints. IEEE Transactions on Knowledge and Data Engineering 12, 5, 845-860.
[18] Calimeri, F., Gebser, M., Maratea, M., and Ricca, F.2016. Design and results of the fifth answer set programming competition. Artificial Intelligence 231, 151-181. · Zbl 1344.68042
[19] Campeotto, F., Dovier, A., and Pontelli, E.2015. A declarative concurrent system for protein structure prediction on GPU. Journal of Experimental & Theoretical Artificial Intelligence 27, 5, 503-541.
[20] Costantini, S. and Formisano, A.2016. Query answering in resource-based answer set semantics. Theory and Practice of Logic Programming 16, 5-6, 619-635. · Zbl 1379.68052
[21] Cuteri, B., Dodaro, C., and Ricca, F.2019. Debugging of answer set programs using paracoherent reasoning. In Proceedings of the Italian Conference on Computational Logic (CILC). CEUR Workshop Proceedings, vol. 2396. CEUR-WS.org, 289-299.
[22] Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., and Shchekotykhin, K.2016. Combining Answer Set Programming and domain heuristics for solving hard industrial problems (Application Paper). Theory and Practice of Logic Programming 16, 5-6, 653-669. · Zbl 1379.68281
[23] Dodaro, C., Leone, N., Nardi, B., and Ricca, F.2015. Allotment problem in travel industry: A solution based on ASP. In Proceedings of the International Conference on Web Reasoning and Rule Systems (RR). Lecture Notes in Computer Science, vol. 9209. Springer, 77-92.
[24] Eiter, T., Fink, M., and Moura, J.2010. Paracoherent answer set programming. In Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning (KR). · Zbl 1351.68259
[25] Eiter, T., Ianni, G., and Krennwallner, T.2009. Answer set programming: A primer. In Proceedings of the Reasoning Web International Summer School. Lecture Notes in Computer Science, vol. 5689. Springer, 40-110. · Zbl 1254.68248
[26] Eiter, T., Leone, N., and Saccà, D.1997. On the partial semantics for disjunctive deductive databases. Annals of Mathematics and Artificial Intelligence 19, 1-2, 59-96. · Zbl 0880.68029
[27] Erdem, E., Gelfond, M., and Leone, N.2016. Applications of answer set programming. AI Magazine 37, 3, 53-68.
[28] Gaggl, S. A., Manthey, N., Ronca, A., Wallner, J. P., and Woltran, S.2015. Improved answer-set programming encodings for abstract argumentation. Theory and Practice of Logic Programming 15, 4-5, 434-448. · Zbl 1379.68292
[29] Galindo, M. J. O., Ramírez, J. R. A., and Carballido, J. L.2008. Logical weak completions of paraconsistent logics. Journal of Logic and Computation 18, 6, 913-940. · Zbl 1156.03025
[30] Gebser, M., Kaminski, R., Kaufmann, B., Romero, J., and Schaub, T.2015. Progress in clasp series 3. In Proceedings of the International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR). Lecture Notes in Computer Science, vol. 9345. Springer, 368-383. · Zbl 06504246
[31] Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T.2012. Answer Set Solving in Practice. Morgan & Claypool Publishers. · Zbl 1251.68060
[32] Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T.2019. Multi-shot ASP solving with clingo. Theory and Practice of Logic Programming 19, 1, 27-82. · Zbl 07107408
[33] Gebser, M., Maratea, M., and Ricca, F.2016. What’s hot in the answer set programming competition. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI). AAAI Press, 4327-4329.
[34] Gebser, M., Maratea, M., and Ricca, F.2017. The sixth answer set programming competition. Journal of Artificial Intelligence Research 60, 41-95. · Zbl 1418.68030
[35] Gelfond, M. and Lifschitz, V.1991. Classical negation in logic programs and disjunctive databases. New Generation Computing 9, 3/4, 365-386. · Zbl 0735.68012
[36] Janota, M. and Marques-Silva, J.2016. On the query complexity of selecting minimal sets for monotone predicates. Artificial Intelligence 233, 73-83. · Zbl 1351.68117
[37] Kleinberg, J. M. and Tardos, É.2006. Algorithm design. Addison-Wesley.
[38] Koshimura, M., Nabeshima, H., Fujita, H., and Hasegawa, R.2009. Minimal model generation with respect to an atom set. In Proceedings of the International Workshop on First-Order Theorem Proving (FTP). CEUR Workshop Proceedings, vol. 556. CEUR-WS.org, 49-59.
[39] Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., and Scarcello, F.2006. The DLV system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7, 3, 499-562. · Zbl 1367.68308
[40] Lierler, Y., Maratea, M., and Ricca, F.2016. Systems, engineering environments, and competitions. AI Magazine 37, 3, 45-52.
[41] Lifschitz, V.1999. Answer set planning. In Proceedings of the International Conference on Logic Programming (ICLP). MIT Press, 23-37.
[42] Lifschitz, V. and Turner, H.1994. Splitting a logic program. In Proceedings of the International Conference on Logic Programming (ICLP). MIT Press, 23-37.
[43] Niemelä, I.1996. A tableau calculus for minimal model reasoning. In Proceedings of the International Workshop on Theorem Proving with Analytic Tableaux and Related Methods (TABLEAUX). 278-294. · Zbl 1412.68247
[44] Pearce, D.2006. Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47, 1-2, 3-41. · Zbl 1117.03039
[45] Pereira, L. M. and Pinto, A. M.2007. Approved models for normal logic programs. In Proceedings of the International Conference on Logic for Programming Artificial Intelligence and Reasoning (LPAR). Lecture Notes in Computer Science, vol. 4790. 454-468. · Zbl 1137.68340
[46] Przymusinski, T. C.1991. Stable semantics for disjunctive programs. New Generation Computing 9, 3/4, 401-424. · Zbl 0796.68053
[47] Sakama, C. and Inoue, K.1995. Paraconsistent stable semantics for extended disjunctive programs. Journal of Logic and Computation 5, 3, 265-285. · Zbl 0827.68070
[48] Seipel, D.1997. Partial evidential stable models for disjunctive deductive databases. In Proceedings of the International Workshop on Logic Programming and Knowledge Representation (LPKR). Lecture Notes in Computer Science, vol. 1471. Springer, 66-84.
[49] van Gelder, A., Ross, K. A., and Schlipf, J. S.1991. The well-founded semantics for general logic programs. Journal of the ACM 38, 3, 620-650. · Zbl 0799.68045
[50] van Harmelen, F., Lifschitz, V., and Porter, B. W., Eds. 2008. Handbook of Knowledge Representation. Foundations of Artificial Intelligence, vol. 3. Elsevier. · Zbl 1183.68611
[51] You, J. and Yuan, L.1994. A three-valued semantics for deductive databases and logic programs. Journal of Computer and System Sciences 49, 2, 334-361. · Zbl 0821.68080
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.