×

Two-step semiparametric empirical likelihood inference. (English) Zbl 1439.62188

Summary: In both parametric and certain nonparametric statistical models, the empirical likelihood ratio satisfies a nonparametric version of Wilks’ theorem. For many semiparametric models, however, the commonly used two-step (plug-in) empirical likelihood ratio is not asymptotically distribution-free, that is, its asymptotic distribution contains unknown quantities, and hence Wilks’ theorem breaks down. This article suggests a general approach to restore Wilks’ phenomenon in two-step semiparametric empirical likelihood inferences. The main insight consists in using as the moment function in the estimating equation the influence function of the plug-in sample moment. The proposed method is general; it leads to a chi-squared limiting distribution with known degrees of freedom; it is efficient; it does not require undersmoothing; and it is less sensitive to the first-step than alternative methods, which is particularly appealing for high-dimensional settings. Several examples and simulation studies illustrate the general applicability of the procedure and its excellent finite sample performance relative to competing methods.

MSC:

62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62G10 Nonparametric hypothesis testing
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] Ackerberg, D., Chen, X., Hahn, J. and Liao, Z. (2014). Asymptotic efficiency of semiparametric two-step GMM. Rev. Econ. Stud. 81 919-943. · Zbl 1409.62246 · doi:10.1093/restud/rdu011
[2] Banerjee, M. (2013). Current status data in the twenty-first century: Some interesting developments. In Interval-Censored Time-to-Event Data. Chapman & Hall/CRC Biostat. Ser. 45-90. CRC Press, Boca Raton, FL.
[3] Beran, R. (1981). Nonparametric regression with randomly censored survival data. Technical Report, Univ. California, Berkeley.
[4] Bertail, P. (2006). Empirical likelihood in some semiparametric models. Bernoulli 12 299-331. · Zbl 1099.62046 · doi:10.3150/bj/1145993976
[5] Bickel, P. J., Klaassen, C. A. J., Ritov, Y. and Wellner, J. A. (1993). Efficient and Adaptive Estimation for Semiparametric Models. Johns Hopkins Univ. Press, Baltimore, MD. · Zbl 0786.62001
[6] Bickel, P. J., Ritov, Y. and Stoker, T. M. (2006). Tailor-made tests for goodness of fit to semiparametric hypotheses. Ann. Statist. 34 721-741. · Zbl 1092.62050 · doi:10.1214/009053606000000137
[7] Bravo, F. (2004). Empirical likelihood based inference with applications to some econometric models. Econometric Theory 20 231-264. · Zbl 1072.62016 · doi:10.1017/S0266466604202018
[8] Bravo, F. (2018). Second order asymptotics for nonparametric conditional moment restrictions. Working paper.
[9] Bravo, F., Chu, B. M. and Jacho-Chávez, D. T. (2017). Semiparametric estimation of moment condition models with weakly dependent data. J. Nonparametr. Stat. 29 108-136. · Zbl 1369.62101 · doi:10.1080/10485252.2016.1254781
[10] Bravo, F., Escanciano, J. C. and Van Keilegom, I. (2020). Supplement to “Two-step semiparametric empirical likelihood inference.” https://doi.org/10.1214/18-AOS1788SUPP. · Zbl 1439.62188 · doi:10.1214/18-AOS1788
[11] Chen, S. X. and Cui, H. (2006). On Bartlett correction of empirical likelihood in the presence of nuisance parameters. Biometrika 93 215-220. · Zbl 1152.62325 · doi:10.1093/biomet/93.1.215
[12] Chen, S. X. and Cui, H. (2007). On the second-order properties of empirical likelihood with moment restrictions. J. Econometrics 141 492-516. · Zbl 1407.62157 · doi:10.1016/j.jeconom.2006.10.006
[13] Chen, S. X. and Van Keilegom, I. (2009). A review on empirical likelihood methods for regression. TEST 18 415-447. · Zbl 1203.62035 · doi:10.1007/s11749-009-0159-5
[14] Chen, X., Hong, H. and Tarozzi, A. (2008). Semiparametric efficiency in GMM models with auxiliary data. Ann. Statist. 36 808-843. · Zbl 1133.62023 · doi:10.1214/009053607000000947
[15] Chen, X., Linton, O. and Van Keilegom, I. (2003). Estimation of semiparametric models when the criterion function is not smooth. Econometrica 71 1591-1608. · Zbl 1154.62325 · doi:10.1111/1468-0262.00461
[16] Chernozhukov, V., Escanciano, J. C., Newey, W. K., Ichimura, H. and Robins, J. (2017). Locally Robust Semiparametric Estimation. Working paper.
[17] Choi, S., Hall, W. J. and Schick, A. (1996). Asymptotically uniformly most powerful tests in parametric and semiparametric models. Ann. Statist. 24 841-861. · Zbl 0860.62020 · doi:10.1214/aos/1032894469
[18] DiCiccio, T., Hall, P. and Romano, J. (1991). Empirical likelihood is Bartlett-correctable. Ann. Statist. 19 1053-1061. · Zbl 0725.62042 · doi:10.1214/aos/1176348137
[19] DiCiccio, T. J. and Romano, J. P. (1989). On adjustments based on the signed root of the empirical likelihood ratio statistic. Biometrika 76 447-456. · Zbl 0676.62043
[20] Du, Y. and Akritas, M. G. (2002). Uniform strong representation of the conditional Kaplan-Meier process. Math. Methods Statist. 11 152-182. · Zbl 1005.62082
[21] Escanciano, J. C., Jacho-Chávez, D. T. and Lewbel, A. (2014). Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing. J. Econometrics 178 426-443. · Zbl 1293.62106 · doi:10.1016/j.jeconom.2013.06.004
[22] Fan, J. and Zhang, J. (2004). Sieve empirical likelihood ratio tests for nonparametric functions. Ann. Statist. 32 1858-1907. · Zbl 1056.62057 · doi:10.1214/009053604000000256
[23] Goldstein, L. and Messer, K. (1992). Optimal plug-in estimators for nonparametric functional estimation. Ann. Statist. 20 1306-1328. · Zbl 0763.62023 · doi:10.1214/aos/1176348770
[24] Groeneboom, P. and Wellner, J. A. (1992). Information Bounds and Nonparametric Maximum Likelihood Estimation. DMV Seminar 19. Birkhäuser, Basel. · Zbl 0757.62017
[25] Hampel, F. R. (1968). Contributions to the theory of robust estimation. Ph.D. thesis, Univ. California, Berkeley.
[26] Hampel, F. R. (1974). The influence curve and its role in robust estimation. J. Amer. Statist. Assoc. 69 383-393. · Zbl 0305.62031 · doi:10.1080/01621459.1974.10482962
[27] He, S., Liang, W., Shen, J. and Yang, G. (2016). Empirical likelihood for right censored lifetime data. J. Amer. Statist. Assoc. 111 646-655.
[28] Hirano, K., Imbens, G. W. and Ridder, G. (2003). Efficient estimation of average treatment effects using the estimated propensity score. Econometrica 71 1161-1189. · Zbl 1152.62328 · doi:10.1111/1468-0262.00442
[29] Hjort, N. L., McKeague, I. W. and Van Keilegom, I. (2009). Extending the scope of empirical likelihood. Ann. Statist. 37 1079-1111. · Zbl 1160.62029 · doi:10.1214/07-AOS555
[30] Huang, J. (1996). Efficient estimation for the proportional hazards model with interval censoring. Ann. Statist. 24 540-568. · Zbl 0859.62032 · doi:10.1214/aos/1032894452
[31] Huang, J. and Wellner, J. A. (1997). Interval Censored Survival Data: A Review of Recent Progress (D. Lin and T. Fleming, eds.). Springer, New York. · Zbl 0916.62077
[32] Ichimura, H. and Linton, O. (2005). Asymptotic expansions for some semiparametric program evaluation estimators. In Identification and Inference for Econometric Models 149-170. Cambridge Univ. Press, Cambridge. · Zbl 1120.62028
[33] Ichimura, H. and Newey, W. (2017). The Influence Function of Semiparametric Estimators. CEMMAP working paper.
[34] Inglot, T. and Ledwina, T. (2006). Data-driven score tests for homoscedastic linear regression model: Asymptotic results. Probab. Math. Statist. 26 41-61. · Zbl 1104.62051
[35] Jewell, N. P. and van der Laan, M. (2004). Current status data: Review, recent developments and open problems. In Advances in Survival Analysis. Handbook of Statist. 23 625-642. Elsevier, Amsterdam.
[36] Koševnik, Ju. A. and Levit, B. J. (1976). On a nonparametric analogue of the information matrix. Theory Probab. Appl. 21 738-753. · Zbl 0388.62037 · doi:10.1137/1121087
[37] Leng, C. and Tong, X. (2013). A quantile regression estimator for censored data. Bernoulli 19 344-361. · Zbl 1259.62019 · doi:10.3150/11-BEJ388
[38] Lepage, Y. (1973). A maximin test for means. Stat. Neerl. 27 55-57. · Zbl 0245.62029 · doi:10.1111/j.1467-9574.1973.tb00208.x
[39] Lewbel, A., McFadden, D. and Linton, O. (2011). Estimating features of a distribution from binomial data. J. Econometrics 162 170-188. · Zbl 1441.62792 · doi:10.1016/j.jeconom.2010.11.006
[40] Li, G., Lin, L. and Zhu, L. (2012). Empirical likelihood for a varying coefficient partially linear model with diverging number of parameters. J. Multivariate Anal. 105 85-111. · Zbl 1236.62020 · doi:10.1016/j.jmva.2011.08.010
[41] Li, Q., Racine, J. and Wooldridge, J. (2008). Estimating average treatment effects with continuous and discrete covariates: The case of Swan-Ganz catherization. Am. Econ. Rev. Pap. Proc. 98 357-362.
[42] Matsushita, Y. and Otsu, T. (2016). Likelihood inference on semiparametric models with generated regressors. LSE working paper. · Zbl 1447.62037
[43] Matsushita, Y. and Otsu, T. (2018). Likelihood inference on semiparametric models: Average derivative and treatment effect. Jpn. Econ. Rev. 69 133-155.
[44] Neumeyer, N. and Van Keilegom, I. (2010). Estimating the error distribution in nonparametric multiple regression with applications to model testing. J. Multivariate Anal. 101 1067-1078. · Zbl 1185.62078 · doi:10.1016/j.jmva.2010.01.007
[45] Newey, W. K. (1994). Kernel estimation of partial means and a general variance estimator. Econometric Theory 10 233-253.
[46] Newey, W. K. (1994). The asymptotic variance of semiparametric estimators. Econometrica 62 1349-1382. · Zbl 0816.62034 · doi:10.2307/2951752
[47] Newey, W. K., Hsieh, F. and Robins, J. M. (2004). Twicing kernels and a small bias property of semiparametric estimators. Econometrica 72 947-962. · Zbl 1091.62024 · doi:10.1111/j.1468-0262.2004.00518.x
[48] Owen, A. (1990). Empirical likelihood ratio confidence regions. Ann. Statist. 18 90-120. · Zbl 0712.62040 · doi:10.1214/aos/1176347494
[49] Owen, A. B. (1988). Empirical likelihood ratio confidence intervals for a single functional. Biometrika 75 237-249. · Zbl 0641.62032 · doi:10.1093/biomet/75.2.237
[50] Owen, A. B. (2001). Empirical Likelihood. CRC Press, London. · Zbl 0989.62019
[51] Pfanzagl, J. (1982). Contributions to a General Asymptotic Statistical Theory. Lecture Notes in Statistics 13. Springer, New York. · Zbl 0512.62001
[52] Powell, J. L., Stock, J. H. and Stoker, T. M. (1989). Semiparametric estimation of index coefficients. Econometrica 57 1403-1430. · Zbl 0683.62070 · doi:10.2307/1913713
[53] Qin, J. and Lawless, J. (1994). Empirical likelihood and general estimating equations. Ann. Statist. 22 300-325. · Zbl 0799.62049 · doi:10.1214/aos/1176325370
[54] Rao, C. R. and Mitra, S. K. (1971). Generalized Inverse of Matrices and Its Applications. Wiley, New York. · Zbl 0236.15004
[55] Rosenbaum, P. R. and Rubin, D. B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika 70 41-55. · Zbl 0522.62091 · doi:10.1093/biomet/70.1.41
[56] Rubin, D. (1974). Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66 688-701.
[57] Shao, J. and Sitter, R. R. (1996). Bootstrap for imputed survey data. J. Amer. Statist. Assoc. 91 1278-1288. · Zbl 0880.62011 · doi:10.1080/01621459.1996.10476997
[58] Strasser, H. (1985). Mathematical Theory of Statistics. De Gruyter Studies in Mathematics 7. de Gruyter, Berlin. · Zbl 0594.62017
[59] Sun, J. (2006). The Statistical Analysis of Interval-Censored Failure Time Data. Statistics for Biology and Health. Springer, New York. · Zbl 1127.62090
[60] Tang, C. Y. and Qin, Y. (2012). An efficient empirical likelihood approach for estimating equations with missing data. Biometrika 99 1001-1007. · Zbl 1452.62175 · doi:10.1093/biomet/ass045
[61] Tang, X., Li, J. and Lian, H. (2013). Empirical likelihood for partially linear proportional hazards models with growing dimensions. J. Multivariate Anal. 121 22-32. · Zbl 1328.62569 · doi:10.1016/j.jmva.2013.06.002
[62] van der Vaart, A. (1991). On differentiable functionals. Ann. Statist. 19 178-204. · Zbl 0732.62035 · doi:10.1214/aos/1176347976
[63] van der Vaart, A. W. (1998). Asymptotic Statistics. Cambridge Series in Statistical and Probabilistic Mathematics 3. Cambridge Univ. Press, Cambridge. · Zbl 0910.62001
[64] van der Vaart, A. W. and Wellner, J. A. (1996). Weak Convergence and Empirical Processes. Springer Series in Statistics. Springer, New York. · Zbl 0862.60002
[65] Wang, D. and Chen, S. X. (2009). Empirical likelihood for estimating equations with missing values. Ann. Statist. 37 490-517. · Zbl 1155.62021 · doi:10.1214/07-AOS585
[66] Wang, Q., Linton, O. and Härdle, W. (2004). Semiparametric regression analysis with missing response at random. J. Amer. Statist. Assoc. 99 334-345. · Zbl 1117.62441
[67] Wang, Q. and Rao, J. N. K. (2001). Empirical likelihood for linear regression models under imputation for missing responses. Canad. J. Statist. 29 597-608. · Zbl 0994.62060 · doi:10.2307/3316009
[68] Wang, Q. and Rao, J. N. K. (2002). Empirical likelihood-based inference in linear models with missing data. Scand. J. Stat. 29 563-576. · Zbl 1035.62067 · doi:10.1111/1467-9469.00306
[69] Wang, Q. and Rao, J. N. K. (2002). Empirical likelihood-based inference under imputation for missing response data. Ann. Statist. 30 896-924. · Zbl 1029.62040 · doi:10.1214/aos/1028674845
[70] Wang, Q.-H. and Jing, B.-Y. (2003). Empirical likelihood for partial linear models. Ann. Inst. Statist. Math. 55 585-595. · Zbl 1047.62026 · doi:10.1007/BF02517809
[71] Wilks, S. S. (1938). The large-sample distribution of the likelihood ratio for testing composite hypotheses. Ann. Math. Stat. 9 60-62. · Zbl 0018.32003 · doi:10.1214/aoms/1177732360
[72] Wu, T. T., Li, G. and Tang, C. (2015). Empirical likelihood for censored linear regression and variable selection. Scand. J. Stat. 42 798-812. · Zbl 1360.62483 · doi:10.1111/sjos.12137
[73] Xue, L. (2009). Empirical likelihood confidence intervals for response mean with data missing at random. Scand. J. Stat. 36 671-685. · Zbl 1223.62055 · doi:10.1111/j.1467-9469.2009.00651.x
[74] Xue, L. and Wang, Q. (2012). Empirical likelihood for single-index varying-coefficient models. Bernoulli 18 836-856. · Zbl 1243.62045 · doi:10.3150/11-BEJ365
[75] Xue, L. and Xue, D. (2011). Empirical likelihood for semiparametric regression model with missing response data. J. Multivariate Anal. 102 723-740. · Zbl 1327.62231 · doi:10.1016/j.jmva.2010.11.001
[76] Xue, L. and Zhu, L. (2007). Empirical likelihood semiparametric regression analysis for longitudinal data. Biometrika 94 921-937. · Zbl 1156.62324 · doi:10.1093/biomet/asm066
[77] Xue, L. and Zhu, L. (2012). Empirical likelihood in some nonparametric and semiparametric models. Stat. Interface 5 367-378. · Zbl 1383.62093 · doi:10.4310/SII.2012.v5.n3.a9
[78] Xue, L.-G. and Zhu, L. (2006). Empirical likelihood for single-index models. J. Multivariate Anal. 97 1295-1312. · Zbl 1099.62045 · doi:10.1016/j.jmva.2005.09.004
[79] Yang, G., Cui, X. and Hou, S. (2017). Empirical likelihood confidence regions in the single-index model with growing dimensions. Comm. Statist. Theory Methods 46 7562-7579. · Zbl 1373.62363 · doi:10.1080/03610926.2016.1157190
[80] Zheng, M., Zhao, Z. and Yu, W. (2012). Empirical likelihood methods based on influence functions. Stat. Interface 5 355-366. · Zbl 1383.62138 · doi:10.4310/SII.2012.v5.n3.a8
[81] Zhu, L., Lin, L., Cui, X. and Li, G. (2010). Bias-corrected empirical likelihood in a multi-link semiparametric model. J. Multivariate Anal. 101 850-868. · Zbl 1181.62039 · doi:10.1016/j.jmva.2009.08.009
[82] Zhu, L. and Xue, L. (2006). Empirical likelihood confidence regions in a partially linear single-index model. J. R. Stat. Soc. Ser. B. Stat. Methodol. 68 549-570. · Zbl 1110.62055 · doi:10.1111/j.1467-9868.2006.00556.x
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.