Koike, Naoyuki Classification of isoparametric submanifolds admitting a reflective focal submanifold in symmetric spaces of non-compact type. (English) Zbl 1439.53057 Osaka J. Math. 57, No. 1, 207-246 (2020). Summary: In this paper, we assume that all isoparametric submanifolds have flat section. The main purpose of this paper is to prove that, if a full irreducible complete isoparametric submanifold of codimension greater than one in a symmetric space of non-compact type admits a reflective focal submanifold and if it is real analytic, then it is a principal orbit of a Hermann type action on the symmetric space. A hyperpolar action on a symmetric space of non-compact type admits a reflective singular orbit if and only if it is a Hermann type action. Hence is not extra the assumption that the isoparametric submanifold admits a reflective focal submanifold. Also, we prove that, if a full irreducible complete isoparametric submanifold of codimension greater than one in a symmetric space of non-compact type satisfies some additional conditions, then it is a principal orbit of the isotropy action of the symmetric space, where we need not to impose that the submanifold is of real analytic. We use the building theory in the proof. Cited in 1 Document MSC: 53C40 Global submanifolds 53C35 Differential geometry of symmetric spaces Keywords:full irreducible complete isoparametric submanifold; reflective focal submanifold; Hermann-type action; principal orbit; anti-Kähler isoparametric submanifold PDF BibTeX XML Cite \textit{N. Koike}, Osaka J. Math. 57, No. 1, 207--246 (2020; Zbl 1439.53057) Full Text: arXiv Euclid References: [1] C.J. Atkin: Geodesic and metric completeness in infinite dimensions, Hokkaido Math. J. 26 (1997), 1-61. · Zbl 0871.58006 [2] M. Berger: Les espaces symétriques non compacts, Ann. Sci. École. Norm. Sup. (3) 74 (1957), 85-177. · Zbl 0093.35602 [3] M. Brück: Equifocal families in symmetric spaces of compact type, J. Reine Angew. Math. 515 (1999), 73-95. · Zbl 0952.53027 [4] K. Burns and R. Spatzier: On topological Tits buildings and their classification, Publ. Math. I.H.E.S. 65 (1987), 5-34. · Zbl 0643.53036 [5] U. Christ: Homogeneity of equifocal submanifolds, J. Differential Geom. 62 (2002), 1-15. · Zbl 1071.53531 [6] H. Ewert: Equifocal submanifolds in Riemannian symmetric spaces, Doctoral thesis, 1997. · Zbl 0913.53021 [7] C. Gorodski and E. Heintze: Homogeneous structures and rigidity of isoparametric submanifolds in Hilbert space, J. Fixed Point Theory Appl. 11 (2012), 93-136. · Zbl 1257.58003 [8] O. Goertsches and G. Thorbergsson: On the Geometry of the orbits of Hermann actions, Geom. Dedicata 129 (2007), 101-118. · Zbl 1131.53021 [9] P. de la Harpe: Classical Banach-Lie Algebras and Banach-Lie Groups of Operators in Hilbert Space, Lecture Notes in Math. 285, Springer-Verlag, Berlin-Heidelberg-New York, 1972. · Zbl 0256.22015 [10] E. Heintze and X. Liu: Homogeneity of infinite dimensional isoparametric submanifolds, Ann. of Math. 149 (1999), 149-181. · Zbl 0931.53027 [11] E. Heintze, X. Liu and C. Olmos: Isoparametric submanifolds and a Chevalley type restriction theorem; in Integrable systems, geometry, and topology, AMS/IP Stud. Adv. Math. 36, Amer. Math. Soc., Providence, RI, 151-190, 2006. · Zbl 1104.53052 [12] E. Heintze, R.S. Palais, C.L. Terng and G. Thorbergsson: Hyperpolar actions on symmetric space; in Geometry, topology and physics, Conf. Proc. Lecture Notes Geom. Topology 4, Internat. Press, Cambridge, Mass., 214-245, 1995. · Zbl 0871.57035 [13] B. Khesin and R. Wendt: The Geometry of Infinite-Dimensional Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics, Springer. [14] N. Koike: Proper isoparametric semi-Riemannian submanifolds in a semi-Riemannian space form, Tsukuba J. Math. 13 (1989), 131-146. · Zbl 0677.53024 [15] N. Koike: Submanifold geometries in a symmetric space of non-compact type and a pseudo-Hilbert space, Kyushu J. Math. 58 (2004), 167-202. · Zbl 1064.53034 [16] N. Koike: Complex equifocal submanifolds and infinite dimensional anti-Kaehlerian isoparametric submanifolds, Tokyo J. Math. 28 (2005), 201-247. · Zbl 1089.53037 [17] N. Koike: Actions of Hermann type and proper complex equifocal submanifolds, Osaka J. Math. 42 (2005), 599-611. · Zbl 1089.53032 [18] N. Koike: A splitting theorem for proper complex equifocal submanifolds, Tohoku Math. J. 58 (2006), 393-417. · Zbl 1116.53033 [19] N. Koike: Complex hyperpolar actions with a totally geodesic orbit, Osaka J. Math. 44 (2007), 491-503. · Zbl 1146.53031 [20] N. Koike: The homogeneous slice theorem for the complete complexification of a proper complex equifocal submanifold, Tokyo J. Math. 33 (2010), 1-30. · Zbl 1208.53060 [21] N. Koike: On curvature-adapted and proper complex equifocal submanifolds, Kyungpook Math. J. 50 (2010), 509-536. · Zbl 1231.53046 [22] N. Koike: Examples of a complex hyperpolar action without singular orbit, Cubo A Math. 12 (2010), 127-143. · Zbl 1254.53085 [23] N. Koike: Hermann type actions on a pseudo-Riemannian symmetric space, Tsukuba J. Math. 34 (2010), 137-172. · Zbl 1215.53047 [24] N. Koike: Collapse of the mean curvature flow for equifocal submanifolds, Asian J. Math. 15 (2011), 101-128. · Zbl 1218.53071 [25] N. Koike: Homogeneity of infinite dimensional anti-Kaehler isoparametric submanifolds, Tokyo J. Math. 37 (2014), 159-178. · Zbl 1301.53052 [26] N. Koike: Homogeneity of infinite dimensional anti-Kaehler isoparametric submanifolds II, Tokyo J. Math. 40 (2017), 301-337. · Zbl 1387.53074 [27] N. Koike: Equifocal submanifolds in a symmetric space and the infinite dimensional geometry, to appear in Amer. Math. Soc. Transl., Sugaku Expositions. · Zbl 1426.53075 [28] A. Kollross: A classification of hyperpolar and cohomogeneity one actions, Trans. Amer. Math. Soc. 354 (2002), 571-612. · Zbl 1042.53034 [29] Y. Maeda, S. Rosenberg and P. Tondeur: The mean curvature of gauge orbits; in Global Analysis in Modern Mathematics (ed. K. Uhlenbeck), Publish or Perish 1993, 171-217. · Zbl 0932.58003 [30] C. Olmos: The normal holonomy group, Proc. Amer. Math. Soc. 110 (1990), 813-818. · Zbl 0708.53023 [31] C. Olmos: Isoparametric submanifolds and their homogeneous structures, J. Differential Geom. 38 (1993), 225-234. · Zbl 0791.53051 [32] C. Olmos and C. Sánchez: A geometric characterization of the orbits of s-representaions, J. Reine Angew. Math. 420 (1991), 195-202. · Zbl 0727.53012 [33] U. Pinkall and G. Thorbergsson: Examples of infinite dimensional isoparametric submanifolds, Math. Z. 205 (1990), 279-286. · Zbl 0725.47018 [34] R.S. Palais and C.L. Terng: Critical point theory and submanifold geometry, Lecture Notes in Math. 1353, Springer-Verlag, Berlin, 1988. · Zbl 0658.49001 [35] C.L. Terng: Isoparametric submanifolds and their Coxeter groups, J. Differential Geom. 21 (1985), 79-107. · Zbl 0615.53047 [36] C.L. Terng: Proper Fredholm submanifolds of Hilbert space, J. Differential Geom. 29 (1989), 9-47. · Zbl 0674.58004 [37] C.L. Terng: Polar actions on Hilbert space, J. Geom. Anal. 5 (1995), 129-150. · Zbl 0818.57023 [38] C.L. Terng and G. Thorbergsson: Submanifold geometry in symmetric spaces, J. Differential Geom. 42 (1995), 665-718. · Zbl 0845.53040 [39] G. Thorbergsson: Isoparametric foliations and their buildings, Ann of Math. 133 (1991), 429-446. · Zbl 0727.57028 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.