×

zbMATH — the first resource for mathematics

On the estimation of unsteady aerodynamic forces and wall spectral content with immersed boundary conditions. (English) Zbl 07196715
Summary: Immersed boundary conditions (IBC) have become a practical tool to simplify the meshing process for the simulation of complex geometries in CFD. This approach has reached a sufficient level of maturity to allow the simulation of compressible high Reynolds number flows. However, the access of physical quantities at the immersed wall is far from being straightforward. This paper provides two methods for the reconstruction of fluctuating wall quantities relying on the creation of explicit watertight surface meshes of the immersed boundary. These surface meshes are used for the investigation of highly unsteady compressible flows of two generic space launcher afterbody configurations using Zonal Detached Eddy Simulation (ZDES). Since the flows are massively separated, the side load arising from the pressure is mainly responsible for the global load unsteadiness. Therefore, in the present study the focus is put on the accuracy of the wall pressure reconstructed on immersed boundaries and compared to validated numerical simulations using a classical body-fitted approach and experimental data. The numerical results demonstrate the ability of the present approaches to accurately capture the global load fluctuation around both afterbody configurations. Moreover, the IBC surface meshes simplify the overall post-processing operations and allow the extraction of wall quantities for unsteady simulation at low computational cost. This last feature has been used for the spectral analysis on IBC surfaces which reproduced successfully the location and the intensity of the pressure fluctuation.
MSC:
76 Fluid mechanics
Software:
AUSM; DIFSUB
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Balaras, E., Modeling complex boundaries using an external force field on fixed cartesian grids in large-eddy simulations, Comput Fluids, 33, 3, 375-404 (2004) · Zbl 1088.76018
[2] Bernardini, M.; Modesti, D.; Pirozzoli, S., On the suitability of the immersed boundary method for the simulation of high-Reynolds-number separated turbulent flows, Comput Fluids, 130, 84-93 (2016) · Zbl 1390.76132
[3] Bharadwaj S, A.; Ghosh, S., Data reconstruction at surface in immersed-boundary methods, Comput Fluids, 196, 104236 (2020) · Zbl 07132266
[4] Brehm, C.; Barad, M. F.; Kiris, C. C., An immersed boundary method for solving the compressible Navier-Stokes equations with fluid-structure interaction, 54th AIAA aerospace sciences meeting (2016)
[5] Brehm, C.; Barad, M. F.; Kiris, C. C., Towards a viscous wall model for immersed boundary methods, 46th AIAA fluid dynamics conference (2016)
[6] Byun, D. Y.; Baek, S. W.; Kim, M. Y., Investigation of radiative heat transfer in complex geometries using blocked-off, multiblock, and embedded boundary treatments, Numer Heat Transf Part A, 43, 8, 807-825 (2003)
[7] Capizzano, F., A compressible flow simulation system based on cartesian grids with anisotropic refinements, 45th AIAA aerospace sciences meeting and exhibit (2007)
[8] Capizzano, F., Coupling a wall diffusion model with an immersed boundary technique, AIAA J, 54, 2, 728-734 (2016)
[9] Capizzano, F., Automatic generation of locally refined cartesian meshes: data management and algorithms, Int J Numer Methods Eng, 113, 5, 789-813 (2017)
[10] Chen, Z. L.; Hickel, S.; Devesa, A.; Berland, J.; Adams, N. A., Wall modeling for implicit large-eddy simulation and immersed-interface methods, Theor Comput Fluid Dyn, 28, 1-21 (2014)
[11] Cristallo, A.; Verzicco, R., Combined immersed boundary/large-eddy-simulations of incompressible three dimensional complex flows, Flow Turbul Combust, 77, 1-4, 3-26 (2006) · Zbl 1106.76037
[12] Dairay, T.; Lamballais, E.; Benhamadouche, S., Mesh node distribution in terms of wall distance for large-eddy simulation of wall-bounded flows, Flow Turbul Combust, 100, 3, 617-626 (2017)
[13] de Tullio, M.; Palma, P. D.; Iaccarino, G.; Pascazio, G.; Napolitano, M., An immersed boundary method for compressible flows using local grid refinement, J Comput Phys, 225, 2, 2098-2117 (2007) · Zbl 1118.76043
[14] Deck, S., Numerical simulation of transonic buffet over a supercritical airfoil, AIAA J, 43, 7, 1556-1566 (2005)
[15] Deck, S., Recent improvements in the zonal detached eddy simulation (ZDES) formulation, Theor Comput Fluid Dyn, 26, 6, 523-550 (2012)
[16] Deck, S.; Gand, F.; Brunet, V.; Khelil, S. B., High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. application of zonal detached eddy simulation, Philos Trans R Soc A, 372, 2022, 20130325 (2014)
[17] Deck, S.; Laraufie, R., Numerical investigation of the flow dynamics past a three-element aerofoil, J Fluid Mech, 732, 401-444 (2013) · Zbl 1294.76210
[18] Deck, S.; Nguyen, A. T., Unsteady side loads in a thrust-optimized contour nozzle at hysteresis regime, AIAA J, 42, 1878-1888 (2004)
[19] Deck, S.; Renard, N., Towards an enhanced protection of attached boundary layers in hybrid RANS/LES methods, J Comput Phys, 400 (2020)
[20] Deck, S.; Thorigny, P., Unsteadiness of an axisymmetric separating-reataching flow: numerical investigation, Phys Fluids, 19, 065103, 1-20 (2007) · Zbl 1182.76190
[21] Deprés, D.; Reijasse, P.; Dussauge, J. P., Analysis of unsteadiness in afterbody transonic flows, AIAA J, 42, 12, 2541-2550 (2004)
[22] Fadlun, E.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J Comput Phys, 161, 1, 35-60 (2000) · Zbl 0972.76073
[23] Gear, C. W., Algorithm 407: DIFSUB for solution of ordinary differential equations [D2], Commun ACM, 14, 3, 185-190 (1971)
[24] Ghias, R.; Mittal, R.; Dong, H., A sharp interface immersed boundary method for compressible viscous flows, J Comput Phys, 225, 528-553 (2007) · Zbl 1343.76043
[25] Kim, W.; Lee, I.; Choi, H., A weak-coupling immersed boundary method for fluid-structure interaction with low density ratio of solid to fluid, J Comput Phys, 359, 296-311 (2018) · Zbl 1383.74086
[26] Kiris, C. C.; Housman, J. A.; Barad, M. F.; Brehm, C.; Sozer, E.; Moini-Yekta, S., Computational framework for launch, ascent, and vehicle aerodynamics (lava), Aerosp Sci Technol, 55, 189-219 (2016)
[27] Liou, M.-S., A sequel to AUSM: AUSM+, J Comput Phys, 129, 364-382 (1996) · Zbl 0870.76049
[28] Meliga, P.; Reijasse, P., Unsteady transonic flow behind an axisymmetric afterbody with two boosters, Proceeding of the 25th AIAA applied aerodynamics conference miami, 1-8 (2007)
[29] Merlin, C.; Domingo, P.; Vervisch, L., Immersed boundaries in large eddy simulation of compressible flows, Flow Turbul Combust, 90, 29-68 (2013)
[30] Meyer, M.; Devesa, A.; Hickel, S.; Hu, X.; Adams, N., A conservative immersed interface method for large-eddy simulation of incompressible flows, J Comput Phys, 229, 18, 6300-6317 (2010) · Zbl 1425.76064
[31] Meyer, M.; Hickel, S.; Adams, N., Assessment of implicit large-eddy simulation with a conservative immersed interface method for turbulent cylinder flow, Int J Heat Fluid Flow, 31, 3, 368-377 (2010)
[32] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu Rev Fluid Mech, 37, 239-261 (2005) · Zbl 1117.76049
[33] Mizuno, Y.; Takahashi, S.; Nonomura, T.; Nagata, T.; Fukuda, K., A simple immersed boundary method for compressible flow simulation around a stationary and moving sphere, Math Probl Eng, 2015, 1-17 (2015) · Zbl 1394.76113
[34] Mochel, L., Etude des effets technologiques par des méthodes numériques innovantes sur des configurations de lanceur. Ph.D. thesis (2015), Universit Pierre et Marie Curie - Paris VI
[35] Mochel, L.; Weiss, P.-É.; Deck, S., Zonal immersed boundary conditions: application to a high-Reynolds-number afterbody flow, AIAA J, 52, 12, 2782-2794 (2014)
[36] Mohd-Yusof, J., Combined immersed-boundary/b-spline methods for simulations of flows in complex geometries, Annu Res Briefs Center Turbul Res, 313-328 (1997)
[37] Nam, J.; Lien, F., Assessment of ghost-cell based cut-cell method for large-eddy simulations of compressible flows at high Reynolds number, Int J Heat Fluid Flow, 53, 1-14 (2015)
[38] O’Brien, A.; Bussmann, M., A volume-of-fluid ghost-cell immersed boundary method for multiphase flows with contact line dynamics, Comput Fluids, 165, 43-53 (2018) · Zbl 1390.76500
[39] Pain, R.; Weiss, P.-É.; Deck, S., Zonal detached eddy simulation of the flow around a simplified launcher afterbody, AIAA J, 52, 9, 1967-1979 (2014)
[40] Pain, R.; Weiss, P.-É.; Deck, S.; Robinet, J.-C., Large scale dynamics of a high Reynolds number axisymmetric separating/reattaching flow, Phys Fluids, 31, 12, 125119 (2019)
[41] Peskin, C. S., Flow patterns around heart valves: a numerical method, J Comput Phys, 10, 2, 252-271 (1972) · Zbl 0244.92002
[42] Piquet, A.; Roussel, O.; Hadjadj, A., A comparative study of Brinkman penalization and direct-forcing immersed boundary methods for compressible viscous flows, Comput Fluids, 136, 272-284 (2016) · Zbl 1390.76611
[43] Sagaut, P.; Deck, S., Large eddy simulation for aerodynamics: status and perspectives, Philos Trans R Soc A, 367, 1899, 2849-2860 (2009) · Zbl 1185.76004
[44] Sedaghat, M. H.; Shahmardan, M. M.; Norouzi, M.; Jayathilake, P. G.; Nazari, M., Numerical simulation of muco-ciliary clearance: immersed boundary lattice Boltzmann method, Comput Fluids, 131, 91-101 (2016) · Zbl 1390.76762
[45] Simon, F.; Deck, S.; Guillen, P.; Sagaut, P., Reynolds-averaged Navier-Stokes/large-eddy simulations of supersonic base flow, AIAA J, 44, 11, 2578-2590 (2006)
[46] Slotnick, J.; Khidadoust, A.; Alonso, J.; Darmofal, D.; Gropp, W.; Lurie, E., Cfd vision 2030 study: a path to revolutionary computational aerosciences, Tech. Rep. 23681-2199 (2013), NASA Langley Research Center
[47] Specklin, M.; Delauré, Y., A sharp immersed boundary method based on penalization and its application to moving boundaries and turbulent rotating flows, Eur J Mech B Fluids, 70, 130-147 (2018) · Zbl 1408.76329
[48] Syrakos, A.; Varchanis, S.; Dimakopoulos, Y.; Goulas, A.; Tsamopoulos, J., A critical analysis of some popular methods for the discretisation of the gradient operator in finite volume methods, Phys Fluids, 29, 12, 127103 (2017)
[49] Tamaki, Y.; Harada, M.; Imamura, T., Near-wall modification of Spalart-Allmaras turbulence model for immersed boundary method, AIAA J, 55, 9, 3027-3039 (2017)
[50] Tamaki, Y.; Imamura, T., Turbulent flow simulations of the NASA common research model using the immersed boundary method with a wall function, 35th AIAA applied aerodynamics conference (2017), American Institute of Aeronautics and Astronautics
[51] Tamaki, Y.; Imamura, T., Turbulent flow simulations of the common research model using immersed boundary method, AIAA J, 1-12 (2018)
[52] Tyacke, J. C.; Mahak, M.; Tucker, P. G., Large-scale multifidelity, multiphysics, hybrid Reynolds-averaged Navier-Stokes/large-eddy simulation of an installed aeroengine, J Propul Power, 32, 4, 997-1008 (2016)
[53] Tyliszczak, A.; Ksiezyk, M., Large eddy simulations of wall-bounded flows using a simplified immersed boundary method and high-order compact schemes, Int J Numer Methods Fluids (2018)
[54] Wald, I.; Havran, V., On building fast kd-trees for ray tracing, and on doing that in o(nlog n), 2006 IEEE Symposium on Interactive ray tracing (2006), IEEE
[55] Wang, K.; Rallu, A.; Gerbeau, J.-F.; Farhat, C., Algorithms for interface treatment and load computation in embedded boundary methods for fluid and fluid-structure interaction problems, Int J Numer Methods Fluids, 67, 1175-1206 (2011) · Zbl 1426.76436
[56] Weiss, P.-É.; Deck, S., Control of the antisymmetric mode \(( m = 1)\) for high Reynolds axisymmetric turbulent separating/reattaching flows, Phys Fluids, 23, 095102 (2011)
[57] Weiss, P.-É.; Deck, S., Zonal detached eddy simulation of the flow dynamics on an Ariane 5-type afterbody, 4th Eur. conf. for aerospace sciences, St-Petersburg, Russia (2011) (2011)
[58] Weiss, P.É.; Deck, S., Numerical investigation of the robustness of an axisymmetric separating/reattaching flow to an external perturbation using ZDES, Flow Turbul Combust, 91, 3, 697-715 (2013)
[59] Weiss, P.-É.; Deck, S., On the coupling of a zonal body-fitted/immersed boundary method with ZDES: application to the interactions on a realistic space launcher afterbody flow, Comput Fluids, 176, 338-352 (2018) · Zbl 1410.76272
[60] Weiss, P.-É.; Deck, S.; Robinet, J.-C.; Sagaut, P., On the dynamics of axisymmetric turbulent separating/reattaching flows, Phys Fluids, 21, 075103, 1-8 (2009) · Zbl 1183.76566
[61] Welch, P., The use of fast fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms, IEEE Trans Audio Electroacoust, 15, 2, 70-73 (1967)
[62] Wilhelm, S.; Jacob, J.; Sagaut, P., An explicit power-law-based wall model for lattice Boltzmann method-Reynolds-averaged numerical simulations of the flow around airfoils, Phys Fluids, 30, 6, 065111 (2018)
[63] Yang, J.; Balaras, E., An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries, J Comput Phys, 215, 1, 12-40 (2006) · Zbl 1140.76355
[64] Yang, J.; Stern, F., A simple and efficient direct forcing immersed boundary framework for fluid-structure interactions, J Comput Phys, 231, 5029-5061 (2012) · Zbl 1351.74025
[65] Zhou, C. H., Rans simulation of high-Re turbulent flows using an immersed boundary method in conjunction with wall modeling, Comput Fluids, 143, 73-89 (2017) · Zbl 1390.76247
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.