×

zbMATH — the first resource for mathematics

Systematic design of high-\(Q\) prestressed micro membrane resonators. (English) Zbl 1442.74113
Summary: Quality factor \((Q)\) and frequency-quality factor \(Qf\) of prestressed membrane resonators are enhanced by topology optimization. The optimization targets the fundamental mode which is more easily identified in physical experiments compared to high-order modes embedded in possibly dense frequency ranges. Both intrinsic and extrinsic losses are considered in the optimization process. With different combinations of the two damping sources, topology optimization yields distinct designs, which reveals that damping mechanisms significantly affect the optimal geometry of micro resonators. For optimized designs, the \(Qf\) in the fundamental mode exceeds the minimum requirement for room-temperature quantum optomechanics \((6.2 \times 10^{12}\,\mathrm{Hz}\) and reaches \(10^{13}\,\mathrm{Hz}\) in numerical experiments.
MSC:
74K15 Membranes
74P15 Topological methods for optimization problems in solid mechanics
Software:
top88.m; top.m
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Krause, A. G., A high-resolution microchip optomechanical accelerometer, Nat. Photon., 6, 768-772 (2012)
[2] Yuan, M.; Singh, V.; Blanter, Y. M.; Steele, G. A., Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity, Nature Commun., 6, 8491 (2015)
[3] Andrews, R.; Peterson, R., Bidirectional and efficient conversion between microwave and optical light, Nat. Phys., 10, 321-326 (2014)
[4] Thompson, J.; Zwick, B., Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature, 452, 72-75 (2008)
[5] Teufel, J. D., Sideband cooling of micromechanical motion to the quantum ground state, Nature, 475, 359-363 (2011)
[6] Chan, J., Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature, 478, 89-92 (2011)
[7] Marquardt, F.; Chen, J. P.; Clerk, A. A.; Girvin, S. M., Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., 99, Article 093902 pp. (2007)
[8] Aspelmeyer, M.; Kippenberg, T. J.; Marquardt, F., Cavity optomechanics, Rev. Modern Phys., 86, 4, 1391 (2014)
[9] Schmid, S.; Jensen, K. D.; Nielsen, K. H.; Boisen, A., Damping mechanisms in high-Q micro and nanomechanical string resonators, Phys. Rev. B, 84, Article 165307 pp. (2011)
[10] Kim, H.; Shin, D. H., Accurate and precise determination of mechanical properties of silicon nitride beam nanoelectromechanical devices, ACS Appl. Mater. Interfaces, 9, 8, 7282-7287 (2017)
[11] Verbridge, S. S.; Shapiro, D. F.; Craighead, H. G., Macroscopic tuning of nanomechanics: Substrate bending for reversible control of frequency and quality factor of nanostring resonators, Nano Lett., 7, 6, 1728-1735 (2007)
[12] Unterreithmeier, Q. P., Damping of nanomechanical resonators, Phys. Rev. Lett., 105, Article 027205 pp. (2010)
[13] Yu, P. L.; Purdy, T. P.; Regal, C. A., Control of material damping in high-q membrane microresonators, Phys. Rev. Lett., 108, Article 083603 pp. (2012)
[14] Wilson, D. J.; Regal, C. A.; Papp, S. B.; Kimble, H. J., Cavity optomechanics with stoichiometric SiN films, Phys. Rev. Lett., 103, Article 207204 pp. (2009)
[15] Chakram, S.; Patil, Y. S.; Chang, L.; Vengalattore, M., Dissipation in ultrahigh quality factor sin membrane resonators, Phys. Rev. Lett., 112, Article 127201 pp. (2014)
[16] Reinhardt, C.; Muller, T.; Bourassa, A.; Sankey, J. C., Ultralow-noise SiN trampoline resonators for sensing and optomechanics, Phys. Rev. X, 6, Article 021001 pp. (2016)
[17] Norte, R.; Moura, J. P.; Gröblacher, S., Mechanical resonators for quantum optomechanics experiments at room temperature, Phys. Rev. Lett., 116, Article 147202 pp. (2016)
[18] Candler, R. N., Impact of geometry on thermoelastic dissipation in micromechanical resonant beams, J. Microelectromech. Syst., 5, 4, 927-933 (2006)
[19] Bendsœ, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 2, 197-224 (1988) · Zbl 0671.73065
[20] Pedersen, N. L., On topology optimization of plates with prestress, Internat. J. Numer. Methods Engrg., 51, 2, 225-239 (2001) · Zbl 0983.74051
[21] Larsen, A. A.; Laksafoss, B.; Jensen, J. S.; Sigmund, O., Topological material layout in plates for vibration suppression and wave propagation control, Struct. Multidiscip. Optim., 37, 6, 585-594 (2009) · Zbl 1274.74359
[22] Gerrard, D. D.; Chen, Y.; Chandorkar, S. A.; Yu, G., Topology optimization for reduction of thermo-elastic dissipation in MEMS resonators, (2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS) (2017), IEEE: IEEE Kaohsiung, Taiwan), 794-797
[23] Liang, X.; Johnson, S. G., Formulation for scalable optimization of microcavities via the frequency-averaged local density of states, Opt. Express, 21, 25, 30812-30841 (2013)
[24] Wang, F.; Christiansen, R. E.; Yu, Y.; Mørk, J.; Sigmund, O., Maximizing the quality factor to mode volume ratio for ultra-small photonic crystal cavities, Appl. Phys. Lett., 113, Article 241101 pp. (2018)
[25] Fu, Y.; Li, L.; Hu, Y., Enlarging quality factor in microbeam resonators by topology optimization, J. Therm. Stresses, 42, 3, 341-360 (2019)
[26] Kleckner, D., Optomechanical trampoline resonators, Opt. Express, 19, 24, 19708-19716 (2011)
[27] Dvorkin, E. N.; Bathe, K. J., A continuum mechanics based four-node shell element for general non-linear analysis, Eng. Comput., 1, 1, 77-88 (1984)
[28] Bathe, K. J., Finite Element Procedures (1996), Prentice hall: Prentice hall New Jersey
[29] Schmid, S.; Villanueva, L. G.; Roukes, M. L., Fundamentals of Nanomechanical Resonators (2016), Springer: Springer Switzerland
[30] Tsaturyan, Y.; Barg, A.; Polzik, E. S.; Schliesser, A., Ultracoherent nanomechanical resonators via soft clamping and dissipation dilution, Nature Nanotechnol., 12, 776-783 (2017)
[31] Bendsœ, M. P., Optimal shape design as a material distribution problem, Struct. Optim., 1, 4, 193-202 (1989)
[32] Zhou, M.; Rozvany, G., The COC algorithm part II: Topological geometrical and generalized shape optimization, Comput. Methods Appl. Mech. Engrg., 89, 1-3, 309-336 (1991)
[33] Sigmund, O., A 99 line topology optimization code written in matlab, Struct. Multidiscip. Optim., 21, 2, 120-127 (2001)
[34] Andreassen, E.; Clausen, A.; Schevenels, M.; Lazarov, B. S.; Sigmund, O., Efficient topology optimization in matlab using 88 lines of code, Struct. Multidiscip. Optim., 43, 1, 1-16 (2011) · Zbl 1274.74310
[35] Stolpe, M.; Svanberg, K., An alternative interpolation scheme for minimum compliance topology optimization, Struct. Multidiscip. Optim., 22, 2, 116-124 (2001)
[36] Wang, F.; Lazarov, B. S.; Sigmund, O.; methods, On.projection., On projection methods convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., 43, 6, 767-784 (2011) · Zbl 1274.74409
[37] Diaz, A. R.; Kikuchi, N., Solutions to shape and topology eigenvalue optimization problems using a homogenization method, Internat. J. Numer. Methods Engrg., 35, 7, 1487-1502 (1992) · Zbl 0767.73046
[38] Ma, Z. D.; Kikuchi, N.; Cheng, H. C., Topological design for vibrating structures, Comput. Methods Appl. Mech. Engrg., 121, 1-4, 259-280 (1995) · Zbl 0849.73045
[39] Pedersen, N. L., Maximization of eigenvalues using topology optimization, Struct. Multidiscip. Optim., 20, 1, 2-11 (2000)
[40] Bendsœ, M. P.; Sigmund, O., Topology optimization - theory, (Methods and Applications (2003), Springer: Springer Berlin) · Zbl 1059.74001
[41] Du, J.; Olhoff, N., Topological design of freely vibrating continuum structures for maximum values of simple and multiple eigenfrequencies and eigenfrequency gaps, Struct. Multidiscip. Optim., 34, 2, 91-110 (2007) · Zbl 1273.74398
[42] Wang, F.; Lazarov, B. S.; Sigmund, O.; Jensen, J. S., Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems, Comput. Methods Appl. Mech. Engrg., 276, 453-472 (2014) · Zbl 1423.74768
[43] Sigmund, O., Morphology-based black and white filters for topology optimization, Struct. Multidiscip. Optim., 33, 4-5, 401-424 (2007)
[44] Svanberg, K., Method of moving asymptotes—a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 2, 359-373 (1987) · Zbl 0602.73091
[45] Tortorelli, D. A.; Michaleris, P., Design sensitivity analysis: Overview and review, Inverse Probl. Eng., 1, 1, 71-105 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.