zbMATH — the first resource for mathematics

A special modified Tikhonov regularization matrix for discrete ill-posed problems. (English) Zbl 07197709
Summary: In this paper, we investigate the solution of large-scale linear discrete ill-posed problems with error-contaminated data. If the solution exists, it is very sensitive to perturbations in the data. Tikhonov regularization, i.e., replacement of the available ill-conditioned problem by a nearby better conditioned one with a fidelity term and a penalty term, can reduce this sensitivity and is a popular approach to determine meaningful approximate solutions of such problems. The penalty term is determined by a regularization matrix. The choice of this matrix may significantly affect the quality of the computed approximate solution. In order to get an appropriate solution with improved accuracy, the paper constructs a special modified Tikhonov regularization (SMTR) matrix so as to include more useful information. The parameters involved in the presented regularization matrix are discussed. Besides, the corresponding preconditioner PSMTR is designed to accelerate the convergence rate of the CGLS method for solving Tikhonov regularization least-squares system. Furthermore, numerical experiments illustrate that the SMTR method and PSMTR preconditioner significantly outperform the related methods in terms of solution accuracy.
65F10 Iterative numerical methods for linear systems
65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
65N20 Numerical methods for ill-posed problems for boundary value problems involving PDEs
Full Text: DOI
[1] Colton, D.; Kress, R., Inverse Acoustic and Electromagnetic Scattering Theory (1998), Berlin, Springer · Zbl 0893.35138
[2] Engl, H. W.; Hanke, M.; Neubauer, A., Regularization of Inverse Problems (1996), Dordrecht, Kluwer · Zbl 0859.65054
[3] Banks, H.; Kunisch, K., Parameter Estimation Techniques for Distributed Systems (1989), Boston, MA, Birkhäuser · Zbl 0695.93020
[4] Hansen, P. C., Rank-deficient and discrete ill-posed problems (1998), SIAM, Philadelphia
[5] Phillips, D. L., A technique for the numerical solution of certain integral equations of the first kind, J. Assoc. Comput. Mach., 9, 84-97 (1962) · Zbl 0108.29902
[6] Tikhonov, A. N.; Arsenin, V. Y., Solutions of ill-posed problems (1977), Winston, Washington, DC · Zbl 0354.65028
[7] Tikhonov, A. N., English translation of Dokl Akad Nauk, SSSR, 151, 501-504 (1963)
[8] Brezinski, C.; Redivo-Zaglia, M.; Rodriguez, G.; Seatzu, S., Extrapolation techniques for ill-conditioned linear systems, Numer. Math., 81, 1-29 (1998) · Zbl 0921.65032
[9] Brezinski, C.; Rodriguez, G.; Seatzu, S., Error estimates for linear systems with applications to regularization, Numer. Algo., 49, 85-104 (2008) · Zbl 1162.65018
[10] Brezinski, C.; Rodriguez, G.; Seatzu, S., Error estimates for the regularization of least squares problems, Numer. Algo., 51, 61-76 (2009) · Zbl 1166.65331
[11] Morigi, S.; Reichel, L.; Sgallari, F., A truncated projected SVD method for linear discrete ill-posed problems, Numer. Algo., 43, 197-213 (2006) · Zbl 1114.65039
[12] Reichel, L.; Ye, Q., Simple square smoothing regularization operators, Electron. Trans. Numer. Anal., 33, 63-83 (2009) · Zbl 1171.65033
[13] Fuhry, M.; Reichel, L., A new Tikhonov regularization method, Numer. Algo., 59, 433-445 (2012) · Zbl 1236.65038
[14] Yang, X. J.; Wang, L., A modified Tikhonov regularization method, J. Comput. Appl. Math., 288, 180-192 (2015) · Zbl 1328.65096
[15] Dou, H. X.; Li, H. B.; Fan, Q. Y.; Chen, Y. C., Signal restoration combining modified Tikhonov regularization and preconditioning technology, IEEE Acess, 5, 24275-24283 (2017)
[16] Groetsch, C. W., The theory of tikhonov regularization for Fredholm equations of the first kind (1984), Pitman, Boston · Zbl 0545.65034
[17] Rezghi, M.; Hosseini, S. M., Lanczos based preconditioner for discrete ill-posed problems, Computing, 88, 79-96 (2010) · Zbl 1190.65049
[18] Bjorck, A., A bidiagonalization algorithm for solving large and sparse ill-posed systems of linear equations, BIT Numer. Math., 28, 659-670 (1988) · Zbl 0658.65041
[19] Hochstenbach, M. E.; McNinch, N.; Reichel, L., Discrete ill-posed least-squares problems with a solution norm constraint, Linear Algebra Appl., 436, 3801-3818 (2012) · Zbl 1237.65039
[20] O’Leary, D. P.; Simmons, J. A., A bidiagonalization-regularization procedure for large scale discretizations of ill-posed problems, SIAM J. Sci. Statist. Comput., 2, 474-489 (1981) · Zbl 0469.65089
[21] Fenu, C.; Reichel, L.; Rodriguez, G.; Sadok, H., GCV For Tikhonov regularization by partial SVD, BIT Numer. Math., 57, 1019-1039 (2017) · Zbl 1386.65118
[22] Craven, P.; Wahba, G., Smoothing noisy data with spline functions, Numer. Math., 31, 377-403 (1979) · Zbl 0377.65007
[23] Golub, G. H.; Heath, M.; Wahba, G., Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21, 215-223 (1979) · Zbl 0461.62059
[24] Golub, G. H.; von Matt, U., Generalized cross-validation for large-scale problems, J. Comput. Graph. Stat., 6, 1-34 (1997)
[25] Kindermann, S., Convergence analysis of minimization-based noise level-free parameter choice rules for linear ill-posed problems, Electron. Trans. Numer. Anal., 38, 233-257 (2011) · Zbl 1287.65043
[26] Novati, P.; Russo, M. R., A GCV based arnoldi-Tikhonov regularization method, BIT Numer. Math., 54, 501-521 (2014) · Zbl 1317.65104
[27] Fenu, C.; Reichel, L.; Rodriguez, G., GCV for tikhonov regularization via global Golub-Kahan decomposition, Numer. Linear Algebra Appl., 23, 467-484 (2016) · Zbl 1374.65064
[28] Hansen, P. C., Regularization tools: a MATLAB package for analysis and solution of discrete ill-posed problems, Numer. Algo., 6, 1-35 (1994) · Zbl 0789.65029
[29] Hansen, P. C.; Nagy, J. G.; OLeary, D. P., Deblurring Images: Matrices Spectra and Filtering (2006), SIAM, Philadelphia · Zbl 1112.68127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.