×

Existence of densities for the dynamic \(\Phi^4_3\) model. (English. French summary) Zbl 1456.60137

Summary: We apply Malliavin calculus to the \(\Phi^4_3\) equation on the torus and prove existence of densities for the solution of the equation evaluated at regular enough test functions. We work in the framework of regularity structures and rely on Besov-type spaces of modelled distributions in order to prove Malliavin differentiability of the solution. Our result applies to a large family of Gaussian space-time noises including white noise, in particular the noise may be degenerate as long as it is sufficiently rough on small scales.

MSC:

60H07 Stochastic calculus of variations and the Malliavin calculus
60H15 Stochastic partial differential equations (aspects of stochastic analysis)

References:

[1] S. Albeverio and M. Röckner. Stochastic differential equations in infinite dimensions: Solutions via Dirichlet forms. Probab. Theory Related Fields 89 (3) (1991) 347-386. · Zbl 0725.60055
[2] H. Bahouri, J.-Y. Chemin and R. Danchin. Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 343. Springer, Heidelberg, 2011. · Zbl 1227.35004
[3] Y. Bakhtin and J. C. Mattingly. Malliavin calculus for infinite-dimensional systems with additive noise. J. Funct. Anal. 249 (2) (2007) 307-353. · Zbl 1130.60063 · doi:10.1016/j.jfa.2007.02.011
[4] Y. Bruned. Equations singulières de type KPZ. PhD thesis, Université Pierre et Marie Curie, 2015.
[5] G. Cannizzaro, P. K. Friz and P. Gassiat. Malliavin calculus for regularity structures: The case of gPAM. J. Funct. Anal. 272 (1) (2017) 363-419. · Zbl 1367.60062 · doi:10.1016/j.jfa.2016.09.024
[6] A. Carbery and J. Wright. Distributional and \(L^q\) norm inequalities for polynomials over convex bodies in \(\mathbb{R}^n \). Math. Res. Lett. 8 (3) (2001) 233-248. · Zbl 0989.26010 · doi:10.4310/MRL.2001.v8.n3.a1
[7] R. Catellier and K. Chouk. Paracontrolled Distributions and the 3-dimensional Stochastic Quantization Equation. ArXiv e-prints, 2013. · Zbl 1433.60048 · doi:10.1214/17-AOP1235
[8] A. Chandra and M. Hairer. An analytic BPHZ theorem for regularity structures. ArXiv e-prints, 2016.
[9] G. Da Prato and A. Debussche. Strong solutions to the stochastic quantization equations. Ann. Probab. 31 (4) (2003) 1900-1916. · Zbl 1071.81070 · doi:10.1214/aop/1068646370
[10] P. Friz and A. Shekhar. Doob-Meyer for rough paths. Bull. Inst. Math. Acad. Sin. (N.S.) 8 (1) (2013) 73-84. · Zbl 1297.60037
[11] P. K. Friz and M. Hairer. A Course on Rough Paths. Universitext. Springer, Cham, 2014. With an introduction to regularity structures. · Zbl 1327.60013
[12] M. Gubinelli, P. Imkeller and N. Perkowski. Paracontrolled distributions and singular PDEs. Forum Math. Pi 3 (e6) (2015) 75. · Zbl 1333.60149 · doi:10.1017/fmp.2015.2
[13] M. Hairer. A theory of regularity structures. Invent. Math. 198 (2) (2014) 269-504. · Zbl 1332.60093 · doi:10.1007/s00222-014-0505-4
[14] M. Hairer. The motion of a random string. ArXiv e-prints, 2016.
[15] M. Hairer and C. Labbé. The reconstruction theorem in Besov spaces. J. Funct. Anal. 273 (8) (2017) 2578-2618. · Zbl 1380.46031 · doi:10.1016/j.jfa.2017.07.002
[16] M. Hairer and J. Mattingly. The strong Feller property for singular stochastic PDEs. ArXiv e-prints, 2016. · Zbl 1426.60088 · doi:10.1214/17-AIHP840
[17] M. Hairer and J. C. Mattingly. Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing. Ann. of Math. (2) 164 (3) (2006) 993-1032. · Zbl 1130.37038 · doi:10.4007/annals.2006.164.993
[18] M. Hairer and J. C. Mattingly. A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Electron. J. Probab. 16 (23) (2011) 658-738. · Zbl 1228.60072 · doi:10.1214/EJP.v16-875
[19] M. Hairer and N. S. Pillai. Regularity of laws and ergodicity of hypoelliptic SDEs driven by rough paths. Ann. Probab. 41 (4) (2013) 2544-2598. · Zbl 1288.60068 · doi:10.1214/12-AOP777
[20] J. C. Mattingly and É. Pardoux. Malliavin calculus for the stochastic 2D Navier-Stokes equation. Comm. Pure Appl. Math. 59 (12) (2006) 1742-1790. · Zbl 1113.60058 · doi:10.1002/cpa.20136
[21] J.-C. Mourrat and H. Weber. The dynamic \(\Phi^4_3\) model comes down from infinity. ArXiv e-prints, 2016. · Zbl 1384.81068 · doi:10.1007/s00220-017-2997-4
[22] J.-C. Mourrat and H. Weber. Global well-posedness of the dynamic \(\Phi^4\) model in the plane. Ann. Probab. 45 (4) (2017) 2398-2476. · Zbl 1381.60098 · doi:10.1214/16-AOP1116
[23] D. Ocone. Stochastic calculus of variations for stochastic partial differential equations. J. Funct. Anal. 79 (2) (1988) 288-331. · Zbl 0653.60046 · doi:10.1016/0022-1236(88)90015-8
[24] M. Röckner, R. Zhu and X. Zhu. Ergodicity for the stochastic quantization problems on the 2D-torus. Comm. Math. Phys. 352 (3) (2017) 1061-1090. · Zbl 1376.81045 · doi:10.1007/s00220-017-2865-2
[25] M. Romito. A simple method for the existence of a density for stochastic evolutions with rough coefficients. ArXiv e-prints, 2017. · Zbl 1406.60089 · doi:10.1214/18-EJP242
[26] P. Tsatsoulis and H. Weber. Spectral Gap for the Stochastic Quantization Equation on the 2-dimensional Torus. Ann. Inst. Henri Poincaré. To appear, 2017. · Zbl 1403.81030 · doi:10.1214/17-AIHP837
[27] R. Zhu and X. Zhu. Dirichlet form associated with the \(\Phi_3^4\) model. ArXiv e-prints, 2017. · Zbl 1415.60082 · doi:10.1214/18-EJP207
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.