×

Fractional Hardy-Sobolev elliptic problems. (English) Zbl 1437.35376

Summary: In this paper, we study the following singular nonlinear elliptic problem \[\begin{cases} (-\Delta)^{ \alpha/ 2} u=\lambda |u|^{r-2}u+\mu\frac{|u|^{q-2}u}{|x|^s} &\text{in }\Omega, \\ u=0 &\text{on } \partial\Omega, \end{cases} \tag{P}\] where \(\Omega\) is a smooth bounded domain in \(\mathbb{R}^N\) (\(N\geq 2\)) with \(0\in \Omega\), \(\lambda,\mu> 0\), \(0< s\leq\alpha\), \((-\Delta)^{\alpha/ 2}\) is the spectral fractional Laplacian operator with \(0< \alpha< 2\). We establish existence results and nonexistence results of problem (P) for subcritical, Sobolev critical and Hardy-Sobolev critical cases.

MSC:

35J75 Singular elliptic equations
35R11 Fractional partial differential equations
35B33 Critical exponents in context of PDEs
35A01 Existence problems for PDEs: global existence, local existence, non-existence
PDFBibTeX XMLCite
Full Text: DOI arXiv Euclid

References:

[1] B. Barrios, E. Colorado, A. De Pablo and U. Sánchez, On some critical problems for the fractional Laplacian oprator, J. Differential Equations 252 (2012), 6133-6162. · Zbl 1245.35034
[2] C. Brändle, E. Colorado and A. De Pablo, A concave-convex elliptic problem involving the fractional Laplacian, Proc. Roy. Soc. Edinburgh Sect. A 143 (2013), 39-71. · Zbl 1290.35304
[3] H. Brézis and E. Lieb, A relation between pointwise convergence of functions and convergence of functionals, Proc. Amer. Math, Soc. 88 (1983), 486-490. · Zbl 0526.46037
[4] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36 (1983), 437-477. · Zbl 0541.35029
[5] X. Cabré and J. Tan, Positive solutions of nonlinear problems involving the square root of the Laplacian, Adv. Math. 224 (2010), 2052-2093. · Zbl 1198.35286 · doi:10.1016/j.aim.2010.01.025
[6] A. Capella, J. Dávila, L. Dupaigne and Y. Sire, Regularity of radial extremal solutions for some non local semilinear equations, Comm. Partial Differential Equations 36 (2011), 1353-1384. · Zbl 1231.35076
[7] L. Caffarelli and L. Silvestre, An extention problem related to the fractional Laplacian, Comm. Partial Differentail Equations 32 (2007), 1245-1260. · Zbl 1143.26002 · doi:10.1080/03605300600987306
[8] D. Cao, X. He and S. Peng, Positive solutions for some singular critical growth nonlinear elliptic equations, Nonlinear Anal. 60 (2005), 589-609. · Zbl 1273.35124 · doi:10.1016/j.na.2004.08.042
[9] W. Chen, C. Li and B. Ou, Classification of solutions for an integral equation, Comm. Pure Appl. Math. 59 (2006), 330-343. · Zbl 1093.45001 · doi:10.1002/cpa.20116
[10] W. Chen, S. Mosconi and M. Squassina, Nonlocal problems with critical Hardy nonlinearity, J. Funct. Anal. 275 (2018), 3065-3114. · Zbl 1402.35113 · doi:10.1016/j.jfa.2018.02.020
[11] A. Cotsiolis and N.K. Travoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl. 295 (2004), 225-236. · Zbl 1084.26009
[12] E. Di Nezza, G. Palatucci and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math. 229 (2012), 521-573. · Zbl 1252.46023 · doi:10.1016/j.bulsci.2011.12.004
[13] M.M. Fall and T. Weth, Nonexistence results for a class of fractional elliptic boundary value problems, J. Funct. Anal. 263 (2012), 2205-2227. · Zbl 1260.35050 · doi:10.1016/j.jfa.2012.06.018
[14] R.L. Frank and R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal. 255 (2008), 3407-3430. · Zbl 1189.26031 · doi:10.1016/j.jfa.2008.05.015
[15] N. Ghoussoub and C. Yuan, Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents, Trans. Amer. Math. Soc. 352 (2000), 5703-5743. · Zbl 0956.35056 · doi:10.1090/S0002-9947-00-02560-5
[16] T. Jin, Y. Li and J. Xiong, On a fractional Nirenberg problem, part I: Blow up analysis and compactness of solutions, J. Eur. Math. Soc. 16 (2014), 1111-1171. · Zbl 1300.53041
[17] D. Kang and S. Peng, Existence of solutions for elliptic problems with critical Sobolev-Hardy exponents, Israel J. Math. 143 (2004), 281-297. · Zbl 1210.35121
[18] D. Kang and S. Peng, Singular elliptic problems in \(R^N\) with critical Sobolev-Hardy exponents, Nonlinear Anal. 68 (2008), no. 5, 1332-1345. · Zbl 1156.35029
[19] G. Li and S. Peng, Remarks on elliptic problems involving the Caffarelli-Kohn-Nirenberg inequalities, Proc. Amer. Math. Soc. 136 (2008), 1221-1228. · Zbl 1133.35045 · doi:10.1090/S0002-9939-07-09229-5
[20] S. Lin and H. Wadade, Minimizing problems for the Hardy-Sobolev type inequality with the singularity on the boundary, Tohoku Math. J. 64 (2012), 79-103. · Zbl 1252.35146
[21] E.H. Lieb and M. Loss, Analysis, Graduate Studies in Mathematicas, vol. 14, Amer. Math. Soc., 2001. · Zbl 0966.26002
[22] P. Lions, The concentration compactness principle in the calculus of variations. The limit case (Parts 1 and 2), Rev. Mat. Iberoam. 1 (1985), 45-121, 145-201. · Zbl 0704.49005
[23] G. Lu and J.Zhu, Symmetry and regularity of extremals of an integral equation related to the Hardy-Sobolev inequality, Calc. Var. Partial Differential Equations 42 (2011), 563-577. · Zbl 1231.35290
[24] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conference, vol. 65, Amer. Math. Soc., Providence, R.I., 1986. · Zbl 0609.58002
[25] J. Tan, The Brézis-Nirenberg type problem involving the square root of the Laplacian, Calc. Var. Partial Differential Equations 42 (2011), 21-41. · Zbl 1248.35078
[26] J. Tan and J. Xiong, A Harnack inequality for fractional Laplace equations with lower order terms, Discrete Contin. Dyn. Syst. 31 (2011), 975-983. · Zbl 1269.26005 · doi:10.3934/dcds.2011.31.975
[27] D. Yafaev, Sharp constants in the Hardy-Rellich inequalities, J. Funct. Anal. 168 (1999), 121-144. · Zbl 0981.26016
[28] J. Yang, Fractional Sobolev-Hardy inequality in \(\mathbb R^N\), Nonlinear Anal. 119 (2015), 179-185. · Zbl 1328.35288
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.