Chen, Xia Parabolic Anderson model with a fractional Gaussian noise that is rough in time. (English. French summary) Zbl 1434.60083 Ann. Inst. Henri Poincaré, Probab. Stat. 56, No. 2, 792-825 (2020). Summary: This paper concerns the parabolic Anderson equation \[\frac{\partial u}{\partial t}=\frac{1}{2}\Delta u+u\frac{\partial^{d+1}W^{\mathbf{H}}}{\partial t\,\partial x_1\cdots \,\partial x_d}\] generated by a \((d+1)\)-dimensional fractional noise with the Hurst parameter \(\mathbf{H}=(H_0,H_1,\ldots,H_d)\) with special interest in the setting that some of \(H_0,\dots,H_d\) are less than half. In the author’s recent work [ibid. 55, No. 2, 941–976 (2019; Zbl 1475.60113)], the case of the spatial roughness has been investigated. To put the last piece of the puzzle in place, this work investigates the case when \(H_0<1/2\) with the concern on solvability, Feynman-Kac’s moment formula and intermittency of the system. Cited in 10 Documents MSC: 60F10 Large deviations 60H15 Stochastic partial differential equations (aspects of stochastic analysis) 60H40 White noise theory 60J65 Brownian motion 81U10 \(n\)-body potential quantum scattering theory Keywords:parabolic Anderson equation; Dalang’s condition; fractional; rough and critical Gaussian noises; Feynman-Kac’s representation; Brownian motion; moment asymptotics Citations:Zbl 1475.60113 × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York, 1965. · Zbl 0171.38503 [2] R. Balan, M. Jolis and L. Quer-Sardanyons. SPDEs with fractional noise in space with index \(H<1/2\). Statist. Probab. Lett. 119 (2016) 310-316. · Zbl 1350.60053 · doi:10.1016/j.spl.2016.09.003 [3] R. A. Carmona and S. A. Molchanov. Parabolic Anderson model and intermittency. Mem. Amer. Math. Soc. 108 (1994). · Zbl 0925.35074 [4] L. Chen, Y. Z. Hu, K. Kalbasi and D. Nualart. Intermittency for the stochastic heat equation driven by a rough time fractional Gaussian noise. Probab. Theory Related Fields 171 (2018) 431-457. · Zbl 1391.60153 · doi:10.1007/s00440-017-0783-z [5] X. Chen. Precise intermittency for the parabolic Anderson equation with an \((1+1)\)-dimensional time-space white noise. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015) 1486-1499. · Zbl 1333.60136 · doi:10.1214/15-AIHP673 [6] X. Chen. Spatial asymptotics for the parabolic Anderson models with generalized time-space Gaussian noise. Ann. Probab. 44 (2016) 1535-1598. · Zbl 1348.60092 · doi:10.1214/15-AOP1006 [7] X. Chen. Moment asymptotics for parabolic Anderson equation with fractional time-space noise: In Skorokhod regime PDF. Ann. Inst. Henri Poincaré Probab. Stat. 53 (2017) 819-841. · Zbl 1386.60214 · doi:10.1214/15-AIHP738 [8] X. Chen. Parabolic Anderson model with rough or critical Gaussian noise. Ann. Inst. Henri Poincaré Probab. Stat. 55 (2) (2019) 941-976. · Zbl 1475.60113 · doi:10.1214/18-AIHP904 [9] X. Chen, Y. Z. Hu, D. Nualart and S. Tindel. Spatial asymptotics for the parabolic Anderson model driven by a Gaussian rough noise PDF. Electron. J. Probab. 22 (2017) 1-38. · Zbl 1386.60135 [10] X. Chen, Y. Z. Hu, S. Song and F. Xing. Exponential asymptotics for time-space Hamiltonians. Ann. Inst. Henri Poincaré Probab. Stat. 51 (2015) 1529-1561. · Zbl 1337.60201 · doi:10.1214/13-AIHP588 [11] X. Chen and T. V. Phan. Free energy in a mean field of Brownian particles. Discrete Contin. Dyn. Syst. 39 (2019) 747-769. · Zbl 1404.60116 · doi:10.3934/dcds.2019031 [12] R. C. Dalang. Extending martingale measure stochastic integral with applications to spatially homogeneous S.P.D.E’s. Electron. J. Probab. 4 (1999) 1-29. · Zbl 0922.60056 · doi:10.1214/EJP.v4-43 [13] A. Deya. On a modelled rough heat equation. Probab. Theory Related Fields 166 (2016) 1-65. · Zbl 1358.60071 · doi:10.1007/s00440-015-0650-8 [14] M. Hairer and C. Labbé. A simple construction of the continuum parabolic Anderson model on \(\mathbb{R}^2 \). Electron. Commun. Probab. 20 (2015) 43, 11 pp. · Zbl 1332.60094 [15] H. Hankel. Die Euler’schen Integrale bei unbeschränkter Variabilität des Arguments. Z. Math. Phys. 9 (1864) 1-21. [16] Y. Z. Hu, J. Huang, K. Le, D. Nualart and S. Tindel. Stochastic heat equation with rough dependence in space. Ann. Probab. 45 (2017) 4561-4616. · Zbl 1393.60066 · doi:10.1214/16-AOP1172 [17] Y. Z. Hu, J. Huang, D. Nualart and D. Tindel. Stochastic heat equations with general multiplicative Gaussian noise: Hölder continuity and intermittency. Electron. J. Probab. 20 (2015) 55, 50 pp. · Zbl 1322.60113 [18] Y. Z. Hu, J. Huang, D. Nualart and S. Tindel. Parabolic Anderson model with rough dependence in space. In Proceedings of the Abel Conference. To appear. · Zbl 1408.60050 [19] Y. Z. Hu and D. Nualart. Stochastic heat equation driven by fractional noise and local time. Probab. Theory Related Fields 143 (2009) 285-328. · Zbl 1152.60331 · doi:10.1007/s00440-007-0127-5 [20] Y. Z. Hu, D. Nualart and J. Song. Feynman-Kac formula for heat equation driven by fractional white noise. Ann. Probab. 39 (2011) 291-326. · Zbl 1210.60056 · doi:10.1214/10-AOP547 [21] J. Huang, K. Lê and D. Nualart. Large time asymptotics for the parabolic Anderson model driven by space and time correlated noise. Stoch. Partial Differ. Equ. Anal. Comput. 5 (2017) 614-651. · Zbl 1387.60064 · doi:10.1007/s40072-017-0099-0 [22] K. Lê. A remark on a result of Xia Chen. Statist. Probab. Lett. 118 (2016) 124-126. · Zbl 1375.60108 [23] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Springer, Berlin, 1991. · Zbl 0748.60004 [24] H. Li and X. Chen. Precise moment asymptotics for the stochastic heat equation of a time-derivative Gaussian noise PDF. Acta Math. Sci. Ser. B Engl. Ed. 39B (2019) 629-644. · Zbl 1499.60226 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.