×

Non-equilibrium fluctuations for the SSEP with a slow bond. (English. French summary) Zbl 1434.60286

Summary: We prove the non-equilibrium fluctuations for the one-dimensional symmetric simple exclusion process with a slow bond. This generalizes a result of our former work [Stochastic Processes Appl. 123, No. 12, 4156–4185 (2013; Zbl 1296.60261)], which dealt with the equilibrium fluctuations. The foundation stone of our proof is a precise estimate on the correlations of the system, and that is by itself one of the main novelties of this paper. To obtain these estimates, we first deduce a spatially discrete PDE for the covariance function and we relate it to the local times of a random walk in a non-homogeneous environment via Duhamel’s principle. Projection techniques and coupling arguments reduce the analysis to the problem of studying the local times of the classical random walk. We think that the method developed here can be applied to a variety of models, and we provide a discussion on this matter.

MSC:

60K35 Interacting random processes; statistical mechanics type models; percolation theory

Citations:

Zbl 1296.60261

References:

[1] P. Billingsley. Convergence of Probability Measures, 2nd edition. Wiley, New York, 1999. · Zbl 0944.60003
[2] A. De Masi, N. Ianiro, A. Pellegrinotti and E. Presutti. A survey of the hydrodynamical behavior of many-particle systems. In Nonequilibrium Phenomena, II 123-294. Stud. Statist. Mech., XI. North-Holland, Amsterdam, 1984. · Zbl 0567.76006
[3] T. Franco, P. Gonçalves and A. Neumann. Hydrodynamical behavior of symmetric exclusion with slow bonds. Ann. Inst. Henri Poincaré Probab. Stat. 49 (2) (2013) 402-427. · Zbl 1282.60095 · doi:10.1214/11-AIHP445
[4] T. Franco, P. Gonçalves and A. Neumann. Phase transition in equilibrium fluctuations of symmetric slowed exclusion. Stochastic Process. Appl. 123 (12) (2013) 4156-4185. · Zbl 1296.60261 · doi:10.1016/j.spa.2013.06.016
[5] T. Franco, P. Gonçalves and A. Neumann. Phase transition of a heat equation with Robin’s boundary conditions and exclusion process. Trans. Amer. Math. Soc. 367 (2015) 6131-6158. · Zbl 1327.60189 · doi:10.1090/S0002-9947-2014-06260-0
[6] T. Franco, P. Gonçalves and A. Neumann. Corrigendum to: Phase transition in equilibrium fluctuations of symmetric slowed exclusion. Stochastic Process. Appl. 126 (10) (2016) 3235-3242. · Zbl 1397.60128 · doi:10.1016/j.spa.2016.06.003
[7] T. Franco, P. Gonçalves and A. Neumann. Non-equilibrium and stationary fluctuations of a slowed boundary symmetric exclusion. Stochastic Process. Appl. 129 (2019) 1413-1442. · Zbl 1488.60232 · doi:10.1016/j.spa.2018.05.005
[8] T. Franco and C. Landim. Hydrodynamic limit of gradient exclusion processes with conductances. Arch. Ration. Mech. Anal. 195 (2) (2010) 409-439. · Zbl 1192.82062 · doi:10.1007/s00205-008-0206-5
[9] R. A. Holley and D. W. Stroock. Generalized Ornstein-Uhlenbeck processes and infinite particle branching Brownian motions. Publ. Res. Inst. Math. Sci. 14 (3) (1978) 741-788. · Zbl 0412.60065 · doi:10.2977/prims/1195188837
[10] J. Jacod and A. N. Shiryaev. Limit theorems for stochastic processes. Grundlehren Math. Wiss. 147 (288) (2003) 519-528. · Zbl 1018.60002
[11] M. D. Jara and C. Landim. Nonequilibrium central limit theorem for a tagged particle in symmetric simple exclusion. Ann. Inst. Henri Poincaré Probab. Stat. 42 (5) (2006) 567-577. · Zbl 1101.60080 · doi:10.1016/j.anihpb.2005.04.007
[12] M. D. Jara and C. Landim. Quenched non-equilibrium central limit theorem for a tagged particle in the exclusion process with bond disorder. Ann. Inst. Henri Poincaré Probab. Stat. 44 (2) (2008) 341-361. · Zbl 1195.60124 · doi:10.1214/07-AIHP112
[13] C. Kipnis and C. Landim. Scaling Limits of Interacting Particle Systems, 1st edition. Grundlehren der Mathematischen Wissenschaften. 320. Springer-Verlag, Berlin Heidelberg, 1999. · Zbl 0927.60002
[14] G. Lawler and V. Limic. Random Walk: A Modern Introduction. Cambridge Studies in Advanced Mathematics 123. Cambridge University Press, Cambridge, 2010. · Zbl 1210.60002
[15] D. A. Levin and Y. Peres. Markov Chains and Mixing Times. American Mathematical Society, Providence, RI, 2017. · Zbl 1390.60001
[16] I. Mitoma. Tightness of probabilities on \({C}({}[0,1];\mathscr{Y}')\) and \({D}({}[0,1];\mathscr{Y}')\). Ann. Probab. 11 (4) (1983) 989-999. · Zbl 0527.60004 · doi:10.1214/aop/1176993447
[17] K. Ravishankar. Fluctuations from the hydrodynamical limit for the symmetric simple exclusion in \(\mathbb{Z}^d \). Stochastic Process. Appl. 42 (1) (1992) 31-37. · Zbl 0754.60127 · doi:10.1016/0304-4149(92)90024-K
[18] M. Reed and B. Simon. Methods of Modern Mathematical Physics I: Functional Analysis, 1st edition. Academic Press, San Diego, 1981. · Zbl 0459.46001
[19] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion, 3rd edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 293. Springer-Verlag, Berlin, 1999. · Zbl 0917.60006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.