×

zbMATH — the first resource for mathematics

Vanishing for Frobenius twists of ample vector bundles. (English) Zbl 1442.14165
Summary: We prove several asymptotic vanishing theorems for Frobenius twists of ample vector bundles in positive characteristic. As an application, we improve the Bott-Danilov-Steenbrink vanishing theorem for ample vector bundles on toric varieties.
MSC:
14M25 Toric varieties, Newton polyhedra, Okounkov bodies
14F17 Vanishing theorems in algebraic geometry
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] Donu Arapura, Frobenius amplitude and strong vanishing theorems for vector bundles, With an appendix by Dennis S. Keeler, Duke Math. J. 121 (2004), no. 2, 231-267. · Zbl 1067.14018
[2] Donu Arapura, Partial regularity and amplitude, Amer. J. Math. 128 (2006), no. 4, 1025-1056. · Zbl 1105.14018
[3] Donu Arapura, Frobenius amplitude, ultraproducts, and vanishing on singular spaces, Illinois J. Math. 55 (2013), no. 4, 1367-1384. · Zbl 1315.14026
[4] Victor V. Batyrev and David A. Cox, On the Hodge structure of projective hypersurfaces in toric varieties, Duke Math. J. 75 (1994), no. 2, 293-338. · Zbl 0851.14021
[5] Michel Brion, Vanishing theorems for Dolbeault cohomology of log homogeneous varieties, Tohoku Math. J. (2) 61 (2009), no. 3, 365-392. · Zbl 1195.14024
[6] Anders Buch, Jesper F. Thomsen, Niels Lauritzen and Vikram Mehta, The Frobenius morphism on a toric variety, Tohoku Math. J. (2) 49 (1997), no. 3, 355-366. · Zbl 0899.14026
[7] Roger W. Carter and George Lusztig, On the modular representations of the general linear and symmetric groups, Math. Z. 136 (1974), 193-242. · Zbl 0298.20009
[8] V. I. Danilov. The geometry of toric varieties, Uspekhi Mat. Nauk. 33 (1978), no. 2 (200), 85-134, 247.
[9] Pierre Deligne and Luc Illusie, Relèvements modulo \(p^2\) et décomposition du complexe de de Rham, Invent. Math. 89 (1987), no. 2, 247-270. · Zbl 0632.14017
[10] Osamu Fujino, Multiplication maps and vanishing theorems for toric varieties, Math. Z. 257 (2007), no. 3, 631-641. · Zbl 1129.14029
[11] Milena Hering, Mircea Mustaţţ and Sam Payne, Positivity properties of toric vector bundles, Ann. Inst. Fourier (Grenoble), 60 (2010), no. 2, 607-640. · Zbl 1204.14024
[12] Nicholas M. Katz, Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ, Math. (1970), no. 39, 175-232. · Zbl 0221.14007
[13] Laurent Manivel, Théorèmes d’annulation sur certaines variétés projectives, Comment. Math. Helv. 71 (1991), no. 3, 402-425. · Zbl 0883.14004
[14] Laurent Manivel, Vanishing theorems for ample vector bundles, Invent. Math. 127 (1997), no. 2, 401-416. · Zbl 0906.14011
[15] Evgeny N. Materov, The Bott formula for toric varieties, Mosc. Math. J. 2 (2002), no. 1, 161-182. · Zbl 1080.14540
[16] Anvar R. Mavlyutov, Cohomology of rational forms and a vanishing theorem on toric varieties, J. Reine Angew. Math. 615 (2008), 45-58. · Zbl 1171.14037
[17] Luca Migliorini, Some observations on cohomologically \(p\)-ample bundles, Ann. Mat. Pura Appl. (4) 164 (1993), no. 2, 89-102. · Zbl 0797.14008
[18] Mircea Mustaţţ, Vanishing theorems on toric varieties, Tohoku Math. J. (2) 54 (2002), no. 3, 451-470. · Zbl 1092.14064
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.