zbMATH — the first resource for mathematics

A coupled HDG-FV scheme for the simulation of transient inviscid compressible flows. (English) Zbl 07200188
Summary: A methodology that combines the advantages of the vertex-centred finite volume (FV) method and high-order hybridisable discontinuous Galerkin (HDG) method is presented for the simulation of the transient inviscid two dimensional flows. The resulting method is suitable for simulating the transient effects on coarse meshes that are suitable to perform steady simulations with traditional low-order methods. In the vicinity of the aerodynamic shapes, FVs are used whereas in regions where the size of the element is too large for finite volumes to provide an accurate answer, the high-order HDG approach is employed with a non-uniform degree of approximation. The proposed method circumvents the need to produce tailored meshes for transient simulations, as required in a low-order context, and also the need to produce high-order curvilinear meshes, as required by high-order methods. Numerical examples are used to test the optimal convergence properties of the combined HDG-FV scheme and to demonstrate its potential in the context of simulating the wind gust effect on aerodynamic shapes.
76 Fluid mechanics
Full Text: DOI
[1] LeVeque, R. J., Finite volume methods for hyperbolic problems, 31 (2002), Cambridge university press · Zbl 1010.65040
[2] Versteeg, H. K.; Malalasekera, W., An introduction to computational fluid dynamics: the finite volume method (2007), Pearson education
[3] Morgan, K.; Peraire, J.; Peiro, J.; Hassan, O., The computation of three-dimensional flows using unstructured grids, Comput Methods Appl Mech Eng, 87, 2-3, 335-352 (1991) · Zbl 0760.76062
[4] Gerhold, T., Overview of the hybrid RANS code TAU, MEGAFLOW-numerical flow simulation for aircraft design, 81-92 (2005), Springer · Zbl 1273.76313
[5] Biedron, R. T.; Carlson, J.-R.; Derlaga, J. M.; Gnoffo, P. A.; Hammond, D. P.; Jones, W. T., FUN3D Manual: 12.9, Tech. Rep. (2016), NASA
[6] Löwe, J.; Probst, A.; Knopp, T.; Kessler, R., A low-dissipation low-dispersion second-order scheme for unstructured finite-volume flow solvers, 53rd AIAA Aerospace Sciences Meeting, 0815 (2015)
[7] Nogueira, X.; Colominas, I.; Cueto-Felgueroso, L.; Khelladi, S., On the simulation of wave propagation with a higher-order finite volume scheme based on reproducing kernel methods, Comput Methods Appl Mech Eng, 199, 23-24, 1471-1490 (2010) · Zbl 1231.76181
[8] Campagne, G.; Hassan, O.; Morgan, K.; Sørensen, K., Higher-order aerodynamic computations using an edge based finite volume scheme, ADIGMA-A European initiative on the development of adaptive higher-order variational methods for Aerospace applications, 309-325 (2010), Springer
[9] ISBN 9780471496663. https://books.google.es/books?id=S4URqrTtSXoC.
[10] Cockburn, B., Discontinuous Galerkin methods for computational fluid dynamics, Encyclopedia Comput Mech Sec Ed, 1-63 (2018)
[11] Whiting, C. H.; Jansen, K. E., A stabilized finite element method for the incompressible navier-stokes equations using a hierarchical basis, Int J Numer Methods Fluids, 35, 1, 93-116 (2001) · Zbl 0990.76048
[12] Chalot, F.; Normand, P.-E., Higher-order stabilized finite elements in an industrial navier-stokes code, ADIGMA-A European initiative on the development of adaptive higher-order variational methods for Aerospace applications, 145-165 (2010), Springer
[13] Sevilla, R.; Hassan, O.; Morgan, K., An analysis of the performance of a high-order stabilised finite element method for simulating compressible flows, Comput Methods Appl Mech Eng, 253, 15-27 (2013) · Zbl 1297.76105
[14] Glasby, R.; Burgess, N.; Anderson, K.; Wang, L.; Allmaras, S.; Mavriplis, D., Comparison of SU/PG and DG finite-element techniques for the compressible Navier-Stokes equations on anisotropic unstructured meshes, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 691 (2013)
[15] Kroll, N.; Bieler, H.; Deconinck, H.; Couaillier, V.; van der Ven, H.; Sorensen, K., ADIGMA-A European initiative on the development of adaptive higher-Order variational methods for aerospace applications: results of a collaborative research project funded by the european union, 2006-2009, 113 (2010), Springer Science & Business Media
[16] Kroll, N.; Hirsch, C.; Bassi, F.; Johnston, C.; Hillewaert, K., IDIHOM: Industrialization of high-Order methods-A top-Down approach: results of a collaborative research project funded by the european union, 2010-2014, 128 (2015), Springer · Zbl 1330.76006
[17] Cockburn, B.; Gopalakrishnan, J., A characterization of hybridized mixed methods for second order elliptic problems, SIAM J Numer Anal, 42, 1, 283-301 (2004) · Zbl 1084.65113
[18] Cockburn, B.; Gopalakrishnan, J., Incompressible finite elements via hybridization. i. the stokes system in two space dimensions, SIAM J Numer Anal, 43, 4, 1627-1650 (2005) · Zbl 1145.76402
[19] Cockburn, B.; Gopalakrishnan, J., New hybridization techniques, GAMM-Mitt, 28, 2, 154-182 (2005) · Zbl 1177.65171
[20] Cockburn, B.; Gopalakrishnan, J.; Lazarov, R., Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J Numer Anal, 47, 2, 1319-1365 (2009) · Zbl 1205.65312
[21] Huerta, A.; Angeloski, A.; Roca, X.; Peraire, J., Efficiency of high-order elements for continuous and discontinuous Galerkin methods, Int J Numer Methods Eng, 96, 9, 529-560 (2013) · Zbl 1352.65512
[22] Yakovlev, S.; Moxey, D.; Kirby, R. M.; Sherwin, S. J., To CG or to HDG: a comparative study in 3D, J Sci Comput, 67, 1, 192-220 (2016) · Zbl 1339.65225
[23] Nguyen, N. C.; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for the incompressible navier-stokes equations, J Comput Phys, 230, 4, 1147-1170 (2011) · Zbl 1391.76353
[24] Peraire, J.; Nguyen, N.; Cockburn, B., A hybridizable discontinuous Galerkin method for the compressible euler and navier-stokes equations, AIAA paper, 363, 2010 (2010)
[25] Giorgiani, G.; Fernández-Méndez, S.; Huerta, A., Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible navier-stokes equations, Comput Fluids, 98, 196-208 (2014) · Zbl 1391.76332
[26] Woopen, M.; May, G., An anisotropic adjoint-based hp-adaptive HDG method for compressible turbulent flow, 53rd AIAA Aerospace Sciences Meeting, 2042 (2015)
[27] Fernandez, P.; Nguyen, N. C.; Peraire, J., The hybridized discontinuous Galerkin method for implicit large-eddy simulation of transitional turbulent flows, J Comput Phys, 336, 308-329 (2017) · Zbl 1375.76069
[28] Rhebergen, S.; Wells, G. N., A hybridizable discontinuous Galerkin method for the navier-stokes equations with pointwise divergence-free velocity field, J Sci Comput, 76, 3, 1484-1501 (2018) · Zbl 1397.76077
[29] Dadone, A.; Grossman, B., Surface boundary conditions for the numerical solution of the euler equations, AIAA J, 32, 2, 285-293 (1994) · Zbl 0800.76323
[30] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D euler equations, J Comput Phys, 138, 2, 251-285 (1997) · Zbl 0902.76056
[31] Krivodonova, L.; Berger, M., High-order accurate implementation of solid wall boundary conditions in curved geometries, J Comput Phys, 211, 2, 492-512 (2006) · Zbl 1138.76403
[32] Sevilla, R.; Fernández-Méndez, S.; Huerta, A., NURBS-Enhanced finite element method (NEFEM) for euler equations, Int J Numer Methods Fluids, 57, 9, 1051-1069 (2008) · Zbl 1140.76023
[33] Ferrer, E.; Willden, R. H., A high order discontinuous Galerkin-fourier incompressible 3D navier-stokes solver with rotating sliding meshes, J Comput Phys, 231, 21, 7037-7056 (2012) · Zbl 1284.35311
[34] Meng, X.; Hu, G., A NURBS-enhanced finite volume solver for steady euler equations, J Comput Phys, 359, 77-92 (2018) · Zbl 1383.76356
[35] Xue, D.; Demkowicz, L., Control of geometry induced error in hp finite element (FE) simulations. i. evaluation of FE error for curvilinear geometries, Int J Numer Anal Model, 2, 3, 283-300 (2005) · Zbl 1073.65122
[36] Sevilla, R.; Fernández - Méndez, S.; Huerta, A., Comparison of high-order curved finite elements, Int J Numer Methods Eng, 87, 8, 719-734 (2011) · Zbl 1242.65244
[37] Soghrati, S.; Merel, R. A., NURBS Enhanced HIFEM: a fully mesh-independent method with zero geometric discretization error, Finite Elem Anal Des, 120, 68-79 (2016)
[38] Sevilla, R.; Huerta, A., HDG-NEFEM With degree adaptivity for stokes flows, J Sci Comput, 77, 3, 1953-1980 (2018) · Zbl 06996165
[39] Sevilla, R.; Fernández - Méndez, S.; Huerta, A., NURBS-Enhanced Finite element method (NEFEM): a seamless bridge between CAD and FEM, Arch Comput Methods Eng, 18, 4, 441-484 (2011)
[40] Gao, H.; Wang, Z. J.; Liu, Y., A study of curved boundary representations for 2D high order euler solvers, J Sci Comput, 44, 3, 323-336 (2010) · Zbl 1203.65032
[41] Dawson, M.; Sevilla, R.; Morgan, K., The application of a high-order discontinuous Galerkin time-domain method for the computation of electromagnetic resonant modes, Appl Math Model, 55, 94-108 (2018) · Zbl 07166630
[42] Luo, X.-J.; Shephard, M. S.; O’bara, R. M.; Nastasia, R.; Beall, M. W., Automatic p-version mesh generation for curved domains, Eng Comput, 20, 3, 273-285 (2004)
[43] Persson, P.-O.; Peraire, J., Curved mesh generation and mesh refinement using lagrangian solid mechanics, Proceedings of the 47th AIAA Aerospace sciences meeting and exhibit (2009), AIAA
[44] Toulorge, T.; Geuzaine, C.; Remacle, J.-F.; Lambrechts, J., Robust untangling of curvilinear meshes, J Comput Phys, 254, 8-26 (2013) · Zbl 1349.65670
[45] Xie, Z. Q.; Sevilla, R.; Hassan, O.; Morgan, K., The generation of arbitrary order curved meshes for 3D finite element analysis, Comput Mech, 51, 361-374 (2013)
[46] Gargallo-Peiró, A.; Roca, X.; Peraire, J.; Sarrate, J., Distortion and quality measures for validating and generating high-order tetrahedral meshes, Eng Comput, 31, 3, 423-437 (2015) · Zbl 1352.65609
[47] Fortunato, M.; Persson, P.-O., High-order unstructured curved mesh generation using the winslow equations, J Comput Phys, 307, 1-14 (2016) · Zbl 1352.65607
[48] Moxey, D.; Ekelschot, D.; Keskin, Ü.; Sherwin, S. J.; Peiró, J., High-order curvilinear meshing using a thermo-elastic analogy, Comput-Aided Des, 72, 130-139 (2016)
[49] Vincent, P. E.; Jameson, A., Facilitating the adoption of unstructured high-order methods amongst a wider community of fluid dynamicists, Math Model Nat Phenom, 6, 3, 97-140 (2011) · Zbl 1387.76002
[50] Chawner, J. R.; Dannenhoffer, J.; Dey, S.; Jones, W.; Slotnick, J. P.; Taylor, N. J., The path to and state of geometry and meshing in 2030: Panel summary, 22nd AIAA computational fluid dynamics conference, 3409 (2015)
[51] Karman, S. L.; Wyman, N.; Steinbrenner, J. P., Mesh generation challenges: A commercial software perspective, 23rd AIAA computational fluid dynamics Conference, 3790 (2017)
[52] Sevilla, R.; Giacomini, M.; Huerta, A., A face-centred finite volume method for second-order elliptic problems, Int J Numer Methods Eng, 115, 8, 986-1014 (2018)
[53] Changfoot, D. M.; Malan, A. G.; Nordström, J., Hybrid computational-fluid-dynamics platform to investigate aircraft trailing vortices, J Aircr, 56, 1, 344-355 (2018)
[54] Dumbser, M.; Zanotti, O.; Loubère, R.; Diot, S., A posteriori subcell limiting of the discontinuous Galerkin finite element method for hyperbolic conservation laws, J Comput Phys, 278, 47-75 (2014) · Zbl 1349.65448
[55] Cockburn, B.; Sayas, F.-J.; Solano, M., Coupling at a distance HDG and BEM, SIAM J Sci Comput, 34, 1, A28-A47 (2012) · Zbl 1241.65105
[56] Paipuri, M.; Tiago, C.; Fernández-Méndez, S., Coupling of continuous and hybridizable discontinuous Galerkin methods: application to conjugate heat transfer problem, J Sci Comput, 78, 1, 321-350 (2019) · Zbl 1422.65407
[57] A. La Spina, M. G.; Huerta, A., Hybrid coupling of CG and HDG discretizations based on nitsche’s method, Comput Mech (2019)
[58] Golubev, V.; Dreyer, B.; Hollenshade, T.; Visbal, M., High-accuracy viscous simulation of gust-airfoil nonlinear aeroelastic interaction, 39th AIAA fluid dynamics conference, 4200 (2009)
[59] Cockburn, B.; Dong, B.; Guzmán, J., A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems, Math Comput, 77, 264, 1887-1916 (2008) · Zbl 1198.65193
[60] Nguyen, N. C.; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations, J Comput Phys, 228, 9, 3232-3254 (2009) · Zbl 1187.65110
[61] Montlaur, A.; Fernández-Méndez, S.; Huerta, A., Discontinuous Galerkin methods for the stokes equations using divergence-free approximations, Int J Numer Methods Fluids, 57, 9, 1071-1092 (2008) · Zbl 1338.76062
[62] Sevilla, R.; Huerta, A., Tutorial on hybridizable discontinuous Galerkin (HDG) for second-order elliptic problems, (Schröder, J.; Wriggers, P., Advanced finite element technologies. Advanced finite element technologies, CISM International Centre for Mechanical Sciences, 566 (2016), Springer International Publishing), 105-129 · Zbl 1356.65238
[63] Nguyen, N. C.; Peraire, J.; Cockburn, B., An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations, J Comput Phys, 228, 23, 8841-8855 (2009) · Zbl 1177.65150
[64] Nguyen, N.; Peraire, J.; Cockburn, B., A hybridizable discontinuous galerkin method for stokes flow, Comput Methods Appl Mech Eng, 199, 9-12, 582-597 (2010) · Zbl 1227.76036
[65] Ascher, U. M.; Petzold, L. R., Computer methods for ordinary differential equations and differential-algebraic equations, 61 (1998), Siam · Zbl 0908.65055
[66] Solin, P.; Segeth, K.; Dolezel, I., Higher-order finite element methods (2003), Chapman and Hall/CRC
[67] Jameson, A.; Schmidt, W.; Turkel, E., Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, 14th fluid and plasma dynamics conference, 1259 (1981)
[68] Sørensen, K.; Hassan, O.; Morgan, K.; Weatherill, N., A multigrid accelerated time-accurate inviscid compressible fluid flow solution algorithm employing mesh movement and local remeshing, Int J Numer Methods Fluids, 43, 5, 517-536 (2003) · Zbl 1032.76622
[69] Persson, P.-O.; Peraire, J., Sub-cell shock capturing for discontinuous Galerkin methods, 44th AIAA Aerospace sciences meeting and exhibit, 112-124 (2006)
[70] Liu, J. W., The multifrontal method for sparse matrix solution: theory and practice, SIAM Rev, 34, 1, 82-109 (1992) · Zbl 0919.65019
[71] HSL. A collection of Fortran codes for large scale scientific computation. http://www.hsl.rl.ac.uk/. 2013.
[72] Yoshihara, H.; Norstrud, H.; Boerstoel, J.; Chiocchia, G.; Jones, D., Test cases for inviscid flow field methods, Tech. Rep. (1985), Advisory group for aerospace research and development: Advisory group for aerospace research and development France
[73] LeVeque, R. J.; Leveque, R. J., Numerical methods for conservation laws, 132 (1992), Springer · Zbl 0847.65053
[74] Nallasamy, M.; Hixon, R.; Sawyer, S., Solution of unsteady euler equations: gust-cascade interaction tones, Comput Fluids, 36, 4, 724-741 (2007) · Zbl 1177.76262
[75] Cook, R. G.; Wales, C.; Gaitonde, A.; Jones, D.; Cooper, J. E., Efficient modelling of a nonlinear gust loads process for uncertainty quantification of highly flexible aircraft, 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1681 (2018)
[76] Pan, D.; Cheng, J.-C., Unstructured euler flutter analysis of two-dimensional wing-tail configuration, J Aircr, 32, 5, 1152-1155 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.