Fabretti, Annalisa; Leorato, Samantha Random distributions via sequential quantile array. (English) Zbl 1462.60062 Electron. J. Stat. 14, No. 1, 1611-1647 (2020). Summary: We propose a method to generate random distributions with known quantile distribution, or, more generally, with known distribution for some form of generalized quantile. The method takes inspiration from the random sequential barycenter array distributions (SBA) proposed by T. Hill and M. Monticino [Ann. Stat. 26, No. 4, 1242–1253 (1998; Zbl 0955.60033)] which generates a random probability measure (RPM) with known expected value. We define the sequential quantile array (SQA) and show how to generate a random SQA from which we can derive RPMs. The distribution of the generated SQA-RPM can have full support and the RPMs can be both discrete, continuous and differentiable. We face also the problem of the efficient implementation of the procedure that ensures that the approximation of the SQA-RPM by a finite number of steps stays close to the SQA-RPM obtained theoretically by the procedure. Finally, we compare SQA-RPMs with similar approaches as Polya Tree. MSC: 60G57 Random measures 62G07 Density estimation Keywords:quantiles; random probability measures; M-quantiles Citations:Zbl 0955.60033 × Cite Format Result Cite Review PDF Full Text: DOI Euclid References: [1] Artzner, P., Delbaen, F., Eber, J.-M., and Heath, D. (1999). Coherent measures of risk., Mathematical Finance, 9:203-228. · Zbl 0980.91042 · doi:10.1111/1467-9965.00068 [2] Bellini, F. and Bernardino, E. D. (2017). Risk management with expectiles., The European Journal of Finance, 23(6):487-506. [3] Billingsley, P. (1968)., Convergence of Probability Measures. Wiley Series in Probability and Mathematical Statistics, Wiley, 1968. · Zbl 0172.21201 [4] Bloomer, L. and Hill, T. (2002). Random probability measures with given mean and variance., Journal of Theoretical Probability, 15:919-937. · Zbl 1017.60005 · doi:10.1023/A:1020688620366 [5] Breckling, J. and Chambers, R. (1988). M-quantiles., Biometrika, 75(4):761-771. · Zbl 0653.62024 · doi:10.1093/biomet/75.4.761 [6] Cascos, I. and Molchanov, I. (2013). Choosing a random distribution with prescribed risks., Insurance: Mathematics and Economics, 52(3):599-605. · Zbl 1284.60098 · doi:10.1016/j.insmatheco.2013.03.014 [7] Chen, Z. (1996). Conditional \(l^p\)-quantiles and their application to testing of symmetry in non-parametric regression., Statistics & Probability Letters, 29:107-115. · Zbl 0865.62021 · doi:10.1016/0167-7152(95)00163-8 [8] Clausing, A. (1982). Kantorovich-type inequalities., The American Mathematical Monthly, 89(5):314-330. · Zbl 0491.26009 · doi:10.1080/00029890.1982.11995446 [9] Crauel, H. (2002)., Random Probability Measures on Polish Spaces. CRC Press. · Zbl 1031.60041 [10] Daouia, A., Girard, S., and Stupfler, G. (2017). Extreme m-quantiles as risk measures: From \(l_1\) to \(l_p\) optimization. TSE Working Papers 17-841, Toulouse School of Economics, (TSE). [11] Dubins, L. E. and Freedman, D. A. (1967). Random distribution functions. In, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 2: Contributions to Probability Theory, Part 1, pages 183-214, Berkeley, Calif. University of California Press. · Zbl 0201.49502 [12] Ferguson, T. S. (1973). A bayesian analysis of some nonparametric problems., Ann. Statist., 1(2):209-230. · Zbl 0255.62037 · doi:10.1214/aos/1176342360 [13] Ferguson, T. S. (1974). Prior distributions on spaces of probability measures., Ann. Statist., 2(4):615-629. · Zbl 0286.62008 · doi:10.1214/aos/1176342752 [14] Gneiting, T. (2011). Making and evaluating point forecasts., Journal of the American Statistical Association, 106:746-762. · Zbl 1232.62028 · doi:10.1198/jasa.2011.r10138 [15] Graf, S., Mauldin, R., and Williams, S. (1986). Random homeomorphisms., Advances in Mathematics, 60:239-359. · Zbl 0596.60005 · doi:10.1016/S0001-8708(86)80001-9 [16] Hanson, T. and Johnson, W. O. (2002). Modeling regression error with a mixture of polya trees., Journal of the American Statistical Association, 97(460):1020-1033. · Zbl 1048.62101 · doi:10.1198/016214502388618843 [17] Hill, T. and Monticino, M. (1998). Construction of random distributions via sequential barycenters., The Annals of Statistics, pages 1242-1253. · Zbl 0955.60033 · doi:10.1214/aos/1024691241 [18] Hjort, N. L. and Walker, S. G. (2009). Quantile pyramids for bayesian nonparametrics., Ann. Statist., 37(1):105-131. · Zbl 1360.62124 · doi:10.1214/07-AOS553 [19] Ishwaran, H. and James, L. F. (2001). Gibbs sampling methods for stick-breaking priors., Journal of the American Statistical Association, 96(453):161-173. · Zbl 1014.62006 · doi:10.1198/016214501750332758 [20] Jones, M. (1994). Expectiles and m-quantiles are quantiles., Statistics & Probability Letters, 20(2):149-153. · Zbl 0801.62012 · doi:10.1016/0167-7152(94)90031-0 [21] Kraft, C. H. (1964). A class of distribution function processes which have derivatives., Journal of Applied Probability, 1(2):385-388. · Zbl 0203.19702 · doi:10.2307/3211867 [22] Lavine, M. (1994). More aspects of polya tree distributions for statistical modelling., Ann. Statist., 22(3):1161-1176. · Zbl 0820.62016 · doi:10.1214/aos/1176325623 [23] Lijoi, A. and Prünster, I. (2009). Distributional properties of means of random probability measures., Statist. Surv., 3:47-95. · Zbl 1190.62056 [24] Mauldin, R. D., Sudderth, W. D., and Williams, S. C. (1992). Polya trees and random distributions., Ann. Statist., 20(3):1203-1221. · Zbl 0765.62006 · doi:10.1214/aos/1176348766 [25] Monticino, M. (2001). How to construct random probability measures., International Statistical Review, 69(1):153-167. · Zbl 1171.60311 · doi:10.1111/j.1751-5823.2001.tb00484.x [26] Müller, P., Quintana, F., Jara, A., and Hanson, T. (2015)., Bayesian Nonparametric Data Analysis. Springer Series in Statistics. · Zbl 1333.62003 [27] Newey, W. K. and Powell, J. L. (1987). Asymmetric Least Squares Estimation and Testing., Econometrica, 55(4), 819-847. · Zbl 0625.62047 · doi:10.2307/1911031 [28] Paddock, S. M., Ruggeri, F., Lavine, M., and West, M. (2003). Randomized polya tree models for nonparametric bayesian inference., Statistica Sinica, 13:443-460. · Zbl 1015.62051 [29] Rodrigues, T., Dortet-Bernadet, J.-L., and Fan, Y. (2019). Pyramid quantile regression., Journal of Computational and Graphical Statistics, 28(3):732-746. · Zbl 1530.62021 [30] Romik, D. (2004). Explicit formulas for hook walks on continual young diagrams., Advances in Applied Mathematics, 32(4):625-654. · Zbl 1051.05080 · doi:10.1016/S0196-8858(03)00096-4 [31] Romik, D. (2005). Roots of the derivative of a polynomial., The American Mathematical Monthly, 112(1):66-69. · Zbl 1138.12300 · doi:10.1080/00029890.2005.11920169 [32] Ruschendorf, L. (1984). On the minimum discrimination information theorem., Statist. & Decisions Suppl. Issue, 1:263-283. · Zbl 0562.62002 [33] Shiryaev, A. (1995)., Probability. Graduate Texts in Mathematics. Springer New York. · Zbl 0835.60002 [34] Walker, S. G. and Mallick, B. K. (1997). Hierarchical generalized linear models and frailty models with bayesian nonparametric mixing., Journal of the Royal Statistical Society: Series B (Statistical Methodology), 59(4):845-860. · Zbl 0886.62072 · doi:10.1111/1467-9868.00101 [35] Ziegel, J. · Zbl 1390.91336 · doi:10.1111/mafi.12080 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.