zbMATH — the first resource for mathematics

Topology optimization on two-dimensional manifolds. (English) Zbl 1442.74167
Summary: This paper presents topology optimization on general two-dimensional manifolds for phenomena described by second-order partial differential equations, where the material interpolation is implemented by using the material distribution method. When a physical field is defined on a two-dimensional manifold, the material interpolation is implemented on a material parameter in the partial differential equation used to describe the distribution of the physical field. When the physical field is defined on a three-dimensional domain with its boundary conditions defined on a two-dimensional manifold corresponding a surface or an interface of this three-dimensional domain, the material density is used to formulate a mixed boundary condition of the partial differential equation for the physical field and implement the penalization between two different boundary types. Based on the homeomorphic property of two-dimensional manifolds, typical two-dimensional manifolds, e.g., sphere, torus, Möbius strip and Klein bottle, are included in the numerical tests, which are used to demonstrate this topology optimization approach for the design problems of fluidic mechanics, heat transfer and electromagnetics.
74P15 Topological methods for optimization problems in solid mechanics
Full Text: DOI
[1] Bendsøe, M. P.; Sigmund, O., Topology Optimization—Theory Methods and Applications (2003), Springer: Springer Berlin · Zbl 1059.74001
[2] Michell, A. G.M., The limit of economy of material in frame-structures, Phil. Mag., 8, 589-597 (1904) · JFM 35.0828.01
[3] Bendsøe, M.; Kikuchi, N., Generating optimal topologies in optimal design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197-224 (1988) · Zbl 0671.73065
[4] Sigmund, O., On the design of compliant mechanisms using topology optimization, Mech. Struct. Mach., 25, 495-526 (1997)
[5] Sigmund, O., A 99-line topology optimization code written in matlab, Struct. Multidisc. Optim., 21, 120-127 (2001)
[6] Rozvany, G. I.N., Aims scope methods history and unified terminology of computer-aided optimization in structural mechanics, Struct. Multidiscip. Optim., 21, 90-108 (2001)
[7] Andkjær, J.; Sigmund, O., Topology optimized low-contrast all-dielectric optical cloak, Appl. Phys. Lett., 98, Article 021112 pp. (2011)
[8] Andkjær, J.; Mortensen, N. A.; Sigmund, O., Towards all-dielectric, polarization independent optical cloaks, Appl. Phys. Lett., 100, Article 101106 pp. (2012)
[9] Bendsøe, M.; Sigmund, O., Material interpolations in topology optimization, Arch. Appl. Mech., 69, 635-645 (1999) · Zbl 0957.74037
[10] Diaz, A. R.; Sigmund, O., A topology optimization method for design of negative permeability metamaterials, Struct. Multidiscip. Optim., 41, 163-177 (2010) · Zbl 1274.74262
[11] Andkjær, J.; Nishiwaki, S.; Nomura, T.; Sigmund, O., Topology optimization of grating couplers for the efficient excitation of surface plasmons, J. Opt. Soc. Amer. B, 27, 1828-1832 (2010)
[12] Deng, Y.; Liu, Z.; Zhang, P.; Liu, Y.; Wu, Y., Topology optimization of unsteady incompressible Navier-Stokes flows, J. Comput. Phys., 230, 6688-6708 (2011) · Zbl 1408.76132
[13] Hassan, E.; Wadbro, E.; Berggren, M., Topology optimization of metallic antennas, IEEE Trans. Antennas and Propagation, 62, 2488-2500 (2014) · Zbl 1370.78251
[14] Borrvall, T.; Petersson, J., Topology optimization of fluid in Stokes flow, Internat. J. Numer. Methods Fluids, 41, 77-107 (2003) · Zbl 1025.76007
[15] Gersborg-Hansen, A.; Bendsøe, M. P.; Sigmund, O., Topology optimization of heat conduction problems using the finite volume method, Struct. Multidiscip. Optim., 31, 251-259 (2006) · Zbl 1245.80011
[16] Nomura, T.; Sato, K.; Taguchi, K.; Kashiwa, T.; Nishiwaki, S., Structural topology optimization for the design of broadband dielectric resonator antennas using the finite difference time domain technique, Internat. J. Numer. Methods Engrg., 71, 1261-1296 (2007) · Zbl 1194.78073
[17] Sigmund, O.; Hougaard, K. G., Geometric properties of optimal photonic crystals, Phys. Rev. Lett., 100, Article 153904 pp. (2008)
[18] Duhring, M. B.; Jensen, J. S.; Sigmund, O., Acoustic design by topology optimization, J. Sound Vib., 317, 557-575 (2008)
[19] Akl, W.; El-Sabbagh, A.; Al-Mitani, K.; Baz, A., Topology optimization of a plate coupled with acoustic cavity, Int. J. Solids Struct., 46, 2060-2074 (2008) · Zbl 1215.74064
[20] Guest, J. K.; Prevost, J. H., Topology optimization of creeping fluid flows using a Darcy-Stokes finite element, Internat. J. Numer. Methods Engrg., 66, 461-484 (2006) · Zbl 1110.76310
[21] Takezawa, A.; Haraguchi, M.; Okamoto, T.; Kitamura, M., Cross-sectional optimization of whispering-gallery mode sensor with high electric field intensity in the detection domain, IEEE J. Sel. Top. Quantum Electron., 20, 1-10 (2014)
[22] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural optimization, Comput. Methods Appl. Mech. Engrg., 192, 227-246 (2003) · Zbl 1083.74573
[23] Allaire, G.; Jouve, F.; Toader, A., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 363-393 (2004) · Zbl 1136.74368
[24] Liu, Z.; Korvink, J. G., Adaptive moving mesh level set method for structure optimization, Eng. Optim., 40, 529-558 (2008)
[25] Xing, X.; Wei, P.; Wang, M. Y., A finite element-based level set method for structural optimization, Internat. J. Numer. Methods Engrg., 82, 805-842 (2010) · Zbl 1188.74092
[26] Xie, Y. M.; Steven, G. P., Evolutionary Structural Optimization (1997), Springer · Zbl 0898.73003
[27] Steven, G. P.; Li, Q.; Xie, Y. M., Evolutionary topology and shape design for physical field problems, Comput. Mech., 26, 129-139 (2000) · Zbl 0961.74050
[28] Tanskanen, P., The evolutionary structural optimization method: theoretical aspects, Comput. Methods Appl. Mech. Engrg., 191, 47-48 (2002) · Zbl 1083.74572
[29] Huang, X.; Xie, Y. M., A further review of eso type methods for topology optimization, Struct. Multidiscip. Optim., 41, 671-683 (2010)
[30] Nabaki, K.; Shen, J.; Huang, X., Stress minimization of structures based on bidirectional evolutionary procedure, J. Struct. Eng., 145, 04018256 (2018)
[31] Guo, X.; Zhang, W.; Zhong, W., Doing topology optimization explicitly and geometrically — a new moving morphable components based framework, J. Appl. Mech., 81, Article 081009 pp. (2014)
[32] Guo, X.; Zhang, W.; Zhang, J.; Yuan, J., Explicit structural topology optimizationbased onmoving morphable components (MMC) with curved skeletons, Comput. Methods Appl. Mech. Engrg., 310, 711-748 (2016)
[33] Takezawa, A.; Nishiwaki, S.; Kitamura, M., Shape and topology optimization based on the phase field method and sensitivity analysis, J. Comput. Phys., 229, 2697-2718 (2010) · Zbl 1185.65109
[34] Ye, Q.; Guo, Y.; Chen, S.; Lei, N.; Gu, X., Topology optimization of conformal structures on manifolds using extended level set methods (X-LSM) and conformal geometry theory, Comput. Methods Appl. Mech. Engrg., 344, 164-185 (2019)
[35] Vogiatzis, P.; Ma, M.; Chen, S.; Gu, X., Computational design and additive manufacturing of periodic conformal metasurfaces by synthesizing topology optimization with conformal mapping, Comput. Methods Appl. Mech. Engrg., 328, 477-497 (2018)
[36] Krog, L.; Olhoff, N., Optimum topology and reinforcement design of disk and plate structures with multiple stiffness and eigenfrequency objectives, Comput. Struct., 72, 535-563 (1996) · Zbl 1050.74644
[37] Ansola, R.; Canales, J.; Tárrago, J. A.; Rasmussen, J., An integrated approach for shape and topology optimization of shell structures, Comput. Struct., 80, 449-458 (2002)
[38] Hassani, B.; Tavakkoli, S. M.; Ghasemnejad, H., Simultaneous shape and topology optimization of shell structures, Struct. Multidiscip. Optim., 48, 221-233 (2013) · Zbl 1274.74340
[39] Lochner-Aldinger, I.; Schumacher, A., Homogenization method, (Adriaenssens, S.; Block, P.; Veenendaal, D.; Williams, C., Shell Structures for Architecture-Form Finding and Optimization (2014), Routledge: Routledge New York)
[40] Clausen, A.; Andreassen, E.; Sigmund, O., Topology optimization of 3D shell structures with porous infill, Acta Mech. Sin., 33, 778-791 (2017) · Zbl 1381.74177
[41] Deng, Y.; Zhou, T.; Liu, Z.; Wu, Y.; Qian, S.; Korvink, J. G., Topology optimization of electrode patterns for electroosmotic micromixer, Int. J. Heat Mass Transfer, 126, 1299-1315 (2018)
[42] Allaire, G.; Dapogny, C.; Delgado, G.; Michailidis, G., Multi-phase structural optimization via a level set method, ESAIM: COCV, 20, 576-611 (2014) · Zbl 1287.49045
[43] Vermaak, N.; Michailidis, G.; Parry, G.; Estevez, R.; Allaire, G.; Bréchet, Y., Material interface effects on the topology optimization of multi-phase structures using a level set method, Struct. Multidiscip. Optim., 50, 623-644 (2014)
[44] Sigmund, O.; Torquato, S., Design of materials with extreme thermal expansion using a three-phase topology optimization method, J. Mech. Phys. Solids, 45, 1037-1067 (1997)
[45] Gibiansky, L. V.; Sigmund, O., Multiphase composites with extremal bulk modulus, J. Mech. Phys. Solids, 48, 461-498 (2000) · Zbl 0989.74060
[46] Gao, T.; Zhang, W., A mass constraint formulation for structural topology optimization with multiphase materials, Internat. J. Numer. Methods Engrg., 88, 774-796 (2011) · Zbl 1242.74070
[47] Luo, Y. J.; Kang, Z.; Yue, Z. F., Maximal stiffness design of two-material structures by topology optimization with nonprobabilistic reliability, AIAA J., 50, 1993-2003 (2012)
[48] Yin, L.; Ananthasuresh, G. K., Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme, Struct. Multidiscip. Optim., 23, 49-62 (2011)
[49] Wang, M. Y.; Wang, X. M., Color level sets: a multi-phase method for structural topology optimization with multiple materials, Comput. Methods Appl. Mech. Engrg., 193, 469-496 (2004) · Zbl 1060.74585
[50] Zhou, S. W.; Wang, M. Y., Multimaterial structural topology optimization with a generalized Cahn-Hilliard model of multiphase transition, Struct. Multidiscip. Optim., 33, 89-111 (2007) · Zbl 1245.74077
[51] Yoon, G. H., Topology optimization for stationary fluidcstructure interaction problems using a new monolithic formulation, Internat. J. Numer. Methods Engrg., 82, 591-616 (2010) · Zbl 1188.74048
[52] Lundgaard, C.; Alexandersen, J.; Zhou, M.; Andreasen, C. S.; Sigmund, O., Revisiting density-based topology optimization for fluid-structure-interaction problems, Struct. Multidiscip. Optim., 58, 969-995 (2018)
[53] Andreasen, C. S., A framework for topology optimization of inertial microfluidic particle manipulators, Struct. Multidiscip. Optim. (2020), https://doi.org/10.1007/s00158-019-02483-5
[54] Aulig, N.; Lepenies, I., A topology optimization interface for LS-DYNA, (11. LS-DYNA Forum (2012), Ulm)
[55] Behrou, R.; Lawry, M.; Maute, K., Level set topology optimization of structural problems with interface cohesion, Internat. J. Numer. Methods Engrg., 112, 990-1016 (2017)
[56] Raulli, M.; Maute, K., Topology optimization of electrostatically actuated microsystems, Struct. Multidiscip. Optim., 30, 342-359 (2005)
[57] Feng, X.; Jiang, L., Design and creation of superwetting/antiwetting surfaces, Adv. Mater., 18, 3063-3078 (2006)
[58] Deng, Y.; Mager, D.; Bai, Y.; Zhou, T.; Liu, Z.; Wen, L.; Wu, Y.; Korvink, J. G., Inversely designed micro-textures for robust Cassie-Baxter mode of super-hydrophobicity, Comput. Methods Appl. Mech. Engrg., 341, 113-132 (2018)
[59] Bico, J.; Marzolin, C.; Quéré, D., Pearl drops, Europhys. Lett., 47, 220 (1999)
[60] Lafuma, A.; Quéré, D., Superhydrophobic states, Nature Mater., 2, 457 (2003)
[61] Li, Q.; Steven, G. P.; Xie, Y. M.; Querin, O. M., Evolutionary topology optimization for temperature reduction of heat conducting fields, Int. J. Heat Mass Transfer, 47, 5071-5083 (2004) · Zbl 1083.80008
[62] Gersborg-Hansen, A.; Bendsoe, M. P.; Sigmund, O., Topology optimization of heat conduction problems using the finite volume method, Struct. Multidiscip. Optim., 31, 251-259 (2006) · Zbl 1245.80011
[63] Zhuang, C.; Xiong, Z.; Ding, H., A level set method for topology optimization of heat conduction problem under multiple load cases, Comput. Methods Appl. Mech. Engrg., 196, 1074-1084 (2007) · Zbl 1120.80312
[64] Kraus, J. D.; Carver, K. R., Electromagnetics (1973), McGraw-Hill edition
[65] Reshetnyak, Y. G., Two-dimensional manifolds of bounded curvature, (Reshetnyak, Y. G., Geometry IV. Geometry IV, Encyclopaedia of Mathematical Sciences (1993), Springer: Springer Berlin-Heidelberg)
[66] Lazarov, B.; Sigmund, O., Filters in topology optimization based on Helmholtz type differential equations, Internat. J. Numer. Methods Engrg., 86, 765-781 (2011) · Zbl 1235.74258
[67] Wang, F.; Lazarov, B. S.; Sigmund, O., On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., 43, 767-784 (2011) · Zbl 1274.74409
[68] Guest, J.; Prevost, J.; Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Internat. J. Numer. Methods Engrg., 61, 238-254 (2004) · Zbl 1079.74599
[69] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1988), Springer · Zbl 0691.35001
[70] Chern, S. S.; Chen, W. H.; Lam, K. S., Lectures on Differential Geometry (1999), World Scientific Publishing · Zbl 0940.53001
[71] Zeidler, E., Nonlinear Functional Analysis and its Applications. I, Fixed-Point Theorems (1986), Springer: Springer Berlin
[72] Hinze, M.; Pinnau, R.; Ulbrich, M.; Ulbrich, S., Optimization with PDE Constraints (2009), Springer: Springer Berlin · Zbl 1167.49001
[73] Dziuk, G.; Elliott, C. M., Finite element methods for surface PDEs, Acta Numer., 22, 289-396 (2013) · Zbl 1296.65156
[74] https://www.comsol.com/.
[75] Sigmund, O., Morphology-based black and white filters for topology optimization, Struct. Multidiscip. Optim., 33, 401-424 (2007)
[76] Svanberg, K., The method of moving asymptotes: a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 359-373 (1987) · Zbl 0602.73091
[77] Young, T., An essay on the cohesion of fluids, Phil. Trans., 65 (1805)
[78] Laplace, P., Supplement to the tenth edition, Méch. Céleste, 10 (1806)
[79] Deng, Y.; Liu, Z.; Liu, Y.; Wu, Y., Combination of topology optimization and optimal control method, J. Comput. Phys., 257, 374-399 (2014) · Zbl 1349.74296
[80] Jin, J., The Finite Element Method in Electromagnetics (2002), John Wiley & Sons: John Wiley & Sons New York · Zbl 1001.78001
[81] Berenger, J., A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., 114, 185-200 (1994) · Zbl 0814.65129
[82] Deng, Y.; Korvink, J. G., Self-consistent adjoint analysis for topology optimization of electromagnetic waves, J. Comput. Phys., 361, 353-376 (2018) · Zbl 1422.78004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.