×

zbMATH — the first resource for mathematics

A Lagrangian formulation for interacting particles on a deformable medium. (English) Zbl 1442.74131
Summary: Many problems in softmatter and membrane biophysics, such as finding the equilibrium configurations of protein clusters on cell-membranes, the highly defect ridden structure of Gag polyproteins in immature HIV capsids, and the unusual fluid-like state of Archaeal viruses can be understood as systems of interacting particles (typically representing proteins or protein capsomers) on deformable surfaces. The coupled interactions between the particles and the underlying elastic medium to which they are constrained pose significant computational challenges. Existing methods often employ expensive constraints to anchor particles to the surface or artificially restrict the particles movement yielding spurious equilibrium states. In this work, a new method is presented where the particles positions are parameterized in the reference configuration. This pull-back operation allows the particles to move freely on the surface without the need of additional constraints. Furthermore, the mapping necessary to describe the particles positions in a discretized setting, e.g., in a finite element mesh, can be done on the reference undeformed configuration at a reduced computational cost. The proposed method is applied to particles moving on manifolds in one and two dimensions to study its convergence characteristics and error when compared to derived analytical and semi-analytical solutions. Finally, the newly developed method is applied to generalized Tammes problems of packing interacting point particles on a deformable shell.
MSC:
74L15 Biomechanical solid mechanics
70H03 Lagrange’s equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Manoharan, V. N., Colloidal matter: Packing, geometry, and entropy, Science, 349, Article 1253751 pp. (2015)
[2] Ridgway, W. J.; Cheviakov, A. F., An iterative procedure for finding locally and globally optimal arrangements of particles on the unit sphere, Comput. Phys. Comm., 233, 84-109 (2018)
[3] Shimada, K.; Yamada, A.; Itoh, T., Anisotropic triangulation of parametric surfaces via close packing of ellipsoids, Internat. J. Comput. Geom. Appl., 10, 417-440 (2000) · Zbl 1074.65513
[4] Luque, A.; Reguera, D.; Morozov, A.; Rudnick, J.; Bruinsma, R., Physics of shell assembly: Line tension, hole implosion, and closure catastrophe, J. Chem. Phys., 136, Article 184507 pp. (2012)
[5] Bruinsma, R. F.; Gelbart, W. M.; Reguera, D.; Rudnick, J.; Zandi, R., Viral self-assembly as a thermodynamic process, Phys. Rev. Lett., 90, Article 248101 pp. (2003)
[6] Singh, A. R.; Perotti, L. E.; Bruinsma, R. F.; Rudnick, J.; Klug, W. S., Ground state instabilities of protein shells are eliminated by buckling, Soft Matter, 13, 8300-8308 (2017)
[7] Perotti, L.; Dharmavaram, S.; Klug, W.; Marian, J.; Rudnick, J.; Bruinsma, R., Useful scars: Physics of the capsids of archaeal viruses, Phys. Rev. E, 94, Article 012404 pp. (2016)
[8] Filippov, A.É.; Wolff, J. O.; Seiter, M.; Gorb, S. N., Numerical simulation of colloidal self-assembly of super-hydrophobic arachnid cerotegument structures, J. Theoret. Biol., 430, 1-8 (2017)
[9] Szeliski, R.; Tonnesen, D., Surface modeling with oriented particle systems, Proceedings of the 19th annual conference on Computer graphics and interactive techniques, 185-194 (1992)
[10] Elliott, C. M.; Gräser, C.; Hobbs, G.; Kornhuber, R.; Wolf, M.-W., A variational approach to particles in lipid membranes, Arch. Ration. Mech. Anal., 222, 1011-1075 (2016) · Zbl 1362.35311
[11] Tammes, P. M.L., On the origin of number and arrangement of the places of exit on the surface of pollen-grains, Recl. Trav. Bot. Néerlandais, 27, 1-84 (1930)
[12] Bucalem, M. L.; Bathe, K.-J., Higher-order MITC general shell elements, Internat. J. Numer. Methods Engrg., 36, 3729-3754 (1993) · Zbl 0800.73466
[13] Cirak, F.; Ortiz, M.; Schröder, P., Subdivision surfaces: a new paradigm for thin-shell finite-element analysis, Internat. J. Numer. Methods Engrg., 47, 2039-2072 (2000) · Zbl 0983.74063
[14] Bathe, K.-J., Finite Element Procedures (2006), Klaus-Jurgen Bathe
[15] Scott, R., Finite element convergence for singular data, Numer. Math., 21, 317-327 (1973) · Zbl 0255.65037
[16] Strang, G.; Fix, G. J., An Analysis of the Finite Element Method, volume 212 (1973), Prentice-hall Englewood Cliffs: Prentice-hall Englewood Cliffs NJ · Zbl 0278.65116
[17] Canton, I.; Battaglia, G., Endocytosis at the nanoscale, Chem. Soc. Rev., 41, 2718-2739 (2012)
[18] Freed, E. O., HIV-1 assembly, release and maturation, Nature Rev. Microbiol., 13, 484 (2015)
[19] Helfrich, W., Elastic properties of lipid bilayers: theory and possible experiments, Z. Nat.forsch. C, 28, 693-703 (1973)
[20] Healey, T. J.; Dharmavaram, S., Symmetry-breaking global bifurcation in a surface continuum phase-field model for lipid bilayer vesicles, SIAM J. Math. Anal., 49, 1027-1059 (2017) · Zbl 1391.35148
[21] Zhu, C.; Byrd, R. H.; Lu, P.; Nocedal, J., Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained optimization, ACM Trans. Math. Software, 23, 550-560 (1997) · Zbl 0912.65057
[22] Thomson, J. J., XXIV. On the structure of the atom: an investigation of the stability and periods of oscillation of a number of corpuscles arranged at equal intervals around the circumference of a circle; with application of the results to the theory of atomic structure, Lond. Edinb. Dublin Philos. Mag. J. Sci., 7, 237-265 (1904) · JFM 35.0790.01
[23] Musin, O. R.; Tarasov, A. S., The Tammes problem for \(N = 14\), Experiment. Math., 24, 460-468 (2015) · Zbl 1327.52042
[24] Erber, T.; Hockney, G., Equilibrium configurations of N equal charges on a sphere, J. Phys. A: Math. Gen., 24, L1369 (1991)
[25] Kusner, R.; Kusner, W.; Lagarias, J. C.; Shlosman, S., Configuration spaces of equal spheres touching a given sphere: the twelve spheres problem, (New Trends in Intuitive Geometry (2018), Springer), 219-277 · Zbl 1442.52015
[26] Wales, D. J.; Doye, J. P., Global optimization by basin-hopping and the lowest energy structures of Lennard-Jones clusters containing up to 110 atoms, J. Phys. Chem. A, 101, 5111-5116 (1997)
[27] Hanusse, P.; Blanché, A., A Monte Carlo method for large reaction-diffusion systems, J. Chem. Phys., 74, 6148-6153 (1981)
[28] Jenkins, J., Static equilibrium configurations of a model red blood cell, J. Math. Biol., 4, 149-169 (1977) · Zbl 0356.92010
[29] Wolfram Research Inc., J., Mathematica (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.