zbMATH — the first resource for mathematics

Color image segmentation using semi-bounded finite mixture models by incorporating mean templates. (English) Zbl 1434.62124
Bouguila, Nizar (ed.) et al., Mixture models and applications. Cham: Springer. Unsuperv. Semi-Superv. Learn., 273-305 (2020).
Summary: Finite mixture models (FMM) are very popular for image segmentation. But, FMM assumes that each pixel is independent from each other. Thus, it does not consider the spatial information of the pixels which makes FMM more sensitive to noise. Generally, the traditional FMM consists of prior probability (PP) and component conditional probability (CP). In this chapter, we have incorporated mean templates, namely weighted geometric mean template (WGMT) and weighted arithmetic mean template (WAMT) to compute the CP. For estimating PP, the weighted geometric mean prior probability (WGMPP) and weighted arithmetic mean prior probability (WAMPP) templates are used. Lastly, the Expectation-Maximization (EM) algorithm is used to estimate the hyper-parameters of the FMM. Our models are proposed based on inverted Dirichlet (ID), generalized inverted Dirichlet (GID), and inverted Beta-Liouville (IBL) mixture models using the mean templates. For experimentation, the Berkeley 500 (BSD500) and MIT’s Computational Visual Cognition Laboratory (CVCL) datasets are used. We have also employed eight image segmentation performance evaluation metrics such as adjusted Rand index and homogeneity score to validate the image segmentation results for the BSD500. Additionally, we have also compared the segmentation outputs for the CVCL dataset which are computed using the traditional RGB and \(l_1l_2l_3\) color spaces. The results obtained from IBL mixture models (IBLMM) are more promising than ID mixture models (IDMM) and GID mixture models (GIDMM).
For the entire collection see [Zbl 1430.62012].
62H30 Classification and discrimination; cluster analysis (statistical aspects)
62H35 Image analysis in multivariate analysis
BSDS; DeepLab
Full Text: DOI
[1] Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61-79 (1997) · Zbl 0894.68131
[2] Fabijańska, A., Gocławski, J.: The segmentation of 3D images using the random walking technique on a randomly created image adjacency graph. IEEE Trans. Image Process. 24(2), 524-537 (2015) · Zbl 1408.94167
[3] Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321-331 (1988) · Zbl 0646.68105
[4] Li, C., Kao, C., Gore, J.C., et al.: Implicit active contours driven by local binary fitting energy. In: Anonymous 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, Piscataway, pp. 1-7 (2007)
[5] Li, C., Xu, C., Gui, C., et al.: Level set evolution without re-initialization: a new variational formulation. In: Anonymous 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 430-436. IEEE, Piscataway (2005)
[6] Ren, Z.: Adaptive active contour model driven by fractional order fitting energy. Signal Process. 117, 138-150 (2015)
[7] Wang, X., Shan, J., Niu, Y., et al.: Enhanced distance regularization for re-initialization free level set evolution with application to image segmentation. Neurocomputing 141, 223-235 (2014)
[8] Wu, J., Zhao, Y., Zhu, J., et al.: Milcut: a sweeping line multiple instance learning paradigm for interactive image segmentation. In: Anonymous Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 256-263 (2014)
[9] Zhang, K., Zhang, L., Song, H., Zhou, W.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28, 668-676 (2010)
[10] Han, B., Wu, Y.: A novel active contour model based on modified symmetric cross entropy for remote sensing river image segmentation. Pattern Recogn. 67, 396-409 (2017)
[11] Chen, Y.-T.: A novel approach to segmentation and measurement of medical image using level set methods. Magn. Reson. Imaging 39, 175-193 (2017)
[12] Feng, C., Zhao, D., Huang, M.: Image segmentation and bias correction using local inhomogeneous intensity clustering (LINC): a region-based level set method. Neurocomputing 219, 107-129 (2017)
[13] Liu, G., Zhang, Y., Wang, A.: Incorporating adaptive local information into fuzzy clustering for image segmentation. IEEE Trans. Image Process. 24, 3990-4000 (2015) · Zbl 1408.94389
[14] Li, G., Chen, X., Shi, F., et al.: Automatic liver segmentation based on shape constraints and deformable graph cut in CT images. IEEE Trans. Image Process. 24, 5315-5329 (2015) · Zbl 1408.94370
[15] Dai, S., Lu, K., Dong, J., et al.: A novel approach of lung segmentation on chest CT images using graph cuts. Neurocomputing 168, 799-807 (2015)
[16] Ji, Z., Xia, Y., Sun, Q., et al.: Fuzzy local Gaussian mixture model for brain MR image segmentation. IEEE Trans. Inf. Technol. Biomed. 16, 339-347 (2012)
[17] Boudaren, M.E.Y., An, L., Pieczynski, W.: Unsupervised segmentation of SAR images using Gaussian mixture-hidden evidential Markov fields. IEEE Geosci. Remote Sens. Lett. 13, 1865-1869 (2016)
[18] Xia, Y., Ji, Z., Zhang, Y.: Brain MRI image segmentation based on learning local variational Gaussian mixture models. Neurocomputing 204, 189-197 (2016)
[19] Nguyen, T.M., Wu, Q.M.J.: Fast and robust spatially constrained Gaussian mixture model for image segmentation. IEEE Trans. Circuits Syst. Video Technol. 23, 621-635 (2013)
[20] Orlando, J.I., Prokofyeva, E., Blaschko, M.B.: A discriminatively trained fully connected conditional random field model for blood vessel segmentation in fundus images. IEEE Trans. Biomed. Eng. 64, 16-27 (2017)
[21] Salehi, S.S.M., Erdogmus, D., Gholipour, A.: Auto-context convolutional neural network (Auto-Net) for brain extraction in magnetic resonance imaging. IEEE Trans. Med. Imaging 36, 2319-2330 (2017)
[22] Duan, Y., Liu, F., Jiao, L., et al.: SAR image segmentation based on convolutional-wavelet neural network and Markov random field. Pattern Recogn. 64, 255-267 (2017)
[23] Sefidpour, A., Bouguila, N.: Spatial color image segmentation based on finite non-Gaussian mixture models. Expert Syst. Appl. 39(10), 8993-9001 (2012)
[24] Bdiri, T., Bouguila, N., Ziou, D.: Variational Bayesian inference for infinite generalized inverted Dirichlet mixtures with feature selection and its application to clustering. Appl. Intell. 44(3), 507-525 (2016)
[25] Bdiri, T., Bouguila, N., Ziou, D.: Visual scenes categorization using a flexible hierarchical mixture model supporting users ontology. In: Anonymous 2013 IEEE 25th International Conference on Tools with Artificial Intelligence, pp. 262-267 (2013)
[26] Al Mashrgy, M., Bdiri, T., Bouguila, N.: Robust simultaneous positive data clustering and unsupervised feature selection using generalized inverted Dirichlet mixture models. Knowl. Based Syst. 59, 182-195 (2014)
[27] Bdiri, T., Bouguila, N., Ziou, D.: A statistical framework for online learning using adjustable model selection criteria. Eng. Appl. Artif. Intell. 49, 19-42 (2016)
[28] Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg (2006) · Zbl 1107.68072
[29] Alush, A., Goldberger, J.: Hierarchical image segmentation using correlation clustering. IEEE Trans. Neural Netw. Learn. Syst. 27, 1358-1367 (2016)
[30] Shi, J., Malik, J.: Normalized cuts and image segmentation. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2000)
[31] Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recogn. 26, 1277-1294 (1993)
[32] McLachlan, G., Peel, D.: Finite Mixture Models. Wiley, New York (2000) · Zbl 0963.62061
[33] Bouguila, N.: Spatial color image databases summarization. In: 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, vol. 1, pp. I-953-I-956. IEEE, Piscataway (2007)
[34] Bouguila, N.: Count data modeling and classification using finite mixtures of distributions. IEEE Trans. Neural Netw. 22(2), 186-198 (2011)
[35] Fan, W., Bouguila, N., Ziou, D.: Variational learning for finite Dirichlet mixture models and applications. IEEE Trans. Neural Netw. Learn. Syst. 23(5), 762-774 (2012)
[36] Yuksel, S.E., Wilson, J.N., Gader, P.D.: Twenty years of mixture of experts. IEEE Trans. Neural Netw. Learn. Syst. 23(8), 1177-1193 (2012)
[37] Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45-57 (2001)
[38] Panahi, R., Gholampour, I.: Accurate detection and recognition of dirty vehicle plate numbers for high-speed applications. IEEE Trans. Intell. Transp. Syst. 18(4), 767-779 (2017)
[39] Cheng, M., Mitra, N.J., Huang, X., et al.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569-582 (2015)
[40] Chen, L., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834-848 (2018)
[41] Hershkovitch, T., Riklin-Raviv, T.: Model-dependent uncertainty estimation of medical image segmentation. In: Anonymous 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), pp. 1373-1376 (2018)
[42] Price, S.R., Price, S.R., Price, C.D., et al.: Pre-screener for automatic detection of road damage in SAR imagery via advanced image processing techniques. In: Anonymous Pattern Recognition and Tracking XXIX, vol. 10649, pp. 1064913. International Society for Optics and Photonics, Bellingham (2018)
[43] Sanjay-Gopal, S., Hebert, T.J.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7(7), 1014-1028 (1998)
[44] Zhang, H., Wu, Q.J., Nguyen, T.M.: Incorporating mean template into finite mixture model for image segmentation. IEEE Trans. Neural Netw. Learn. Syst. 24(2), 328-335 (2013)
[45] Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257-286 (1989)
[46] Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45-57 (2001)
[47] Martin, D., Fowlkes, C., Tal, D., et al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Anonymous. ICCV, Vancouver (2001)
[48] Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145-175 (2001) · Zbl 0990.68601
[49] Moon, T.K.: The expectation-maximization algorithm. IEEE Signal Process. Mag. 13(6), 47-60 (1996)
[50] Tiao, G.G., Cuttman, I.: The inverted Dirichlet distribution with applications. J. Am. Stat. Assoc. 60(311), 793-805 (1965) · Zbl 0133.42504
[51] Graybill, F.A.: Matrices with Applications in Statistics. Wadsworth, Belmont (1983) · Zbl 0496.15002
[52] Bdiri, T., Bouguila, N.: Positive vectors clustering using inverted Dirichlet finite mixture models. Expert Syst. Appl. 39(2), 1869-1882 (2012)
[53] Bdiri, T., Bouguila, N., Ziou, D.: A statistical framework for online learning using adjustable model selection criteria. Eng. Appl. Artif. Intell. 49, 19-42 (2016)
[54] Fang, K.: Symmetric multivariate and related distributions. Chapman and Hall/CRC, New York (1990) · Zbl 0699.62048
[55] Hu, C., Fan, W., Du, J., et al.: A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models. Neurocomputing 333, 110-123 (2019)
[56] Strehl, A., Joydeep, G.: Cluster ensembles – a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583-617 (2002) · Zbl 1084.68759
[57] Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison. In: Proceedings of the 26th Annual International Conference on Machine Learning - ICML (2009) · Zbl 1242.62062
[58] Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings comparison: variants, properties, normalization and correction for chance. J. Mach. Learn. Res. 11, 2837 (2010) · Zbl 1242.62062
[59] Yang, Z., Algesheimer, R., Tessone, C.J.: A comparative analysis of community detection algorithms on artificial networks. Sci. Rep. 6, 30750 (2016)
[60] Rosenberg, A., Hirschberg, J.: V-measure: a conditional entropy-based external cluster evaluation measure. In: Proceedings of the Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 410-420 (2007)
[61] Becker, H.: Identification and Characterization of Events in Social Media, PhD Thesis (2011)
[62] Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3, 1-27 (1974) · Zbl 0273.62010
[63] Tan, P.N., Steinbach, M., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Reading (2005)
[64] Jaccard, P.: Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bull. Soc. Vaud. Sci. Nat. 37, 547-579 (1901)
[65] Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11, 37-50 (1912)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.