On sum formulas for Mordell-Tornheim zeta values. (English) Zbl 1456.11165

Summary: In this paper we prove new sum formulas for Mordell-Tornheim zeta values in the case of depth 2 and 3, expressing the sums as single multiples of Riemann zeta values. Also, we obtain weighted sum formulas for double Mordell-Tornheim zeta values. Moreover, we present a sum formula for the Mordell-Tornheim series of even arguments.


11M32 Multiple Dirichlet series and zeta functions and multizeta values
Full Text: DOI Euclid


[1] J. M. Borwein \andword R. Girgensohn, “Evaluation of triple Euler sums”, Electron. J. Combin. 3:1 (1996), Research Paper 23. \xoxMR1401442 · Zbl 0884.40005
[2] D. M. Bradley \andword X. Zhou, “On Mordell-Tornheim sums and multiple zeta values”, Ann. Sci. Math. Québec 34:1 (2010), 15-23. \xoxMR2744193 \xoxZBL1264.11079 · Zbl 1264.11079
[3] L. Euler, “Meditationes circa singulare serierum genus”, Novi Comm. Acad. Sci. Petropol. 20 (1776), 140-186.
[4] A. Granville, “A decomposition of Riemann”s zeta-function”, \ppword 95-101 \inword Analytic number theory (Kyoto, 1996), \editedbyword Y. Motohashi, London Math. Soc. Lecture Note Ser. 247, Cambridge Univ. Press, 1997. \xoxMR1694987 \xoxZBL0907.11024
[5] L. Guo \andword B. Xie, “Weighted sum formula for multiple zeta values”, J. Number Theory 129:11 (2009), 2747-2765. \xoxMR2549530 \xoxZBL1229.11117 · Zbl 1229.11117
[6] M. E. Hoffman, “Multiple harmonic series”, Pacific J. Math. 152:2 (1992), 275-290. \xoxMR1141796 \xoxZBL0763.11037 · Zbl 0763.11037
[7] J. G. Huard, K. S. Williams\serialcomma \andword N.-Y. Zhang, “On Tornheim”s double series”, Acta Arith. 75:2 (1996), 105-117. \xoxMR1379394 \xoxZBL0858.40008
[8] K. Kamano, “Finite Mordell-Tornheim multiple zeta values”, Funct. Approx. Comment. Math. 54:1 (2016), 65-72. \xoxMR3477735 \xoxZBL1407.11102 · Zbl 1407.11102
[9] T. Machide, “Extended double shuffle relations and the generating function of triple zeta values of any fixed weight”, Kyushu J. Math. 67:2 (2013), 281-307. \xoxMR3115205 \xoxZBL1318.11111 · Zbl 1318.11111
[10] K. Matsumoto, “On Mordell-Tornheim and other multiple zeta-functions”, \inword Proceedings of the Session in Analytic Number Theory and Diophantine Equations, \editedbyword D. R. Heath-Brown \andword B. Z. Moroz, Bonner Math. Schriften 360, Univ. Bonn, 2003. \xoxMR2075634 \xoxZBL1056.11049
[11] Y. Ohno \andword W. Zudilin, “Zeta stars”, Commun. Number Theory Phys. 2:2 (2008), 325-347. \xoxMR2442776 \xoxZBL1228.11132 · Zbl 1228.11132
[12] L. Tornheim, “Harmonic double series”, Amer. J. Math. 72 (1950), 303-314. \xoxMR34860 \xoxZBL0036.17203 · Zbl 0036.17203
[13] H. Tsumura, “On Mordell-Tornheim zeta values”, Proc. Amer. Math. Soc. 133:8 (2005), 2387-2393. \xoxMR2138881 \xoxZBL1059.40003 · Zbl 1059.40003
[14] H. Yuan \andword J. Zhao, “New families of weighted sum formulas for multiple zeta values”, Rocky Mountain J. Math. 45:6 (2015), 2065-2096. \xoxMR3473167 \xoxZBL1332.05010 · Zbl 1332.05010
[15] D. Zagier, “Multiple zeta values”, unpublished manuscript, 1995.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.