×

zbMATH — the first resource for mathematics

On the global convergence of an inexact quasi-Newton conditional gradient method for constrained nonlinear systems. (English) Zbl 07202183
Summary: In this paper, we propose a globally convergent method for solving constrained nonlinear systems. The method combines an efficient Newton conditional gradient method with a derivative-free and nonmonotone line search strategy. The global convergence analysis of the proposed method is established under suitable conditions, and some preliminary numerical experiments are given to illustrate its performance.
MSC:
65 Numerical analysis
Software:
minpack; STRSCNE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Argyros, IK; Hilout, S., Estimating upper bounds on the limit points of majorizing sequences for Newton’s method, Numer Algorithms, 62, 1, 115-132 (2013) · Zbl 1259.65080
[2] Barzilai, J.; Borwein, JM, Two-point step size gradient methods, IMA J. Numer Anal., 8, 1, 141-148 (1988) · Zbl 0638.65055
[3] Beck, A.; Teboulle, M., A conditional gradient method with linear rate of convergence for solving convex linear systems, Math Methods Oper. Res., 59, 2, 235-247 (2004) · Zbl 1138.90440
[4] Bellavia, S.; Macconi, M.; Morini, B., An affine scaling trust-region approach to bound-constrained nonlinear systems, Appl. Num. Math., 44, 3, 257-280 (2003) · Zbl 1018.65067
[5] Bellavia, S.; Morini, B., Subspace trust-region methods for large bound-constrained nonlinear equations, SIAM J. Numer. Anal., 44, 4, 1535-1555 (2006) · Zbl 1128.65033
[6] Birgin, EG; Krejić, N.; Martínez, JM, Globally convergent inexact quasi-Newton methods for solving nonlinear systems, Numer. Algorithms, 32, 2, 249-260 (2003) · Zbl 1034.65032
[7] Bogle, IDL; Perkins, JD, A new sparsity preserving quasi-Newton update for solving nonlinear equations, SIAM J. Sci. Statist. Comput., 11, 4, 621-630 (1990) · Zbl 0749.65033
[8] Broyden, CG, The convergence of an algorithm for solving sparse nonlinear systems, Math. Comp., 25, 285-294 (1971) · Zbl 0227.65038
[9] Cruz, WL; Raydan, M., Nonmonotone spectral methods for large-scale nonlinear systems, Optim Methods Softw., 18, 5, 583-599 (2003) · Zbl 1069.65056
[10] Echebest, N.; Schuverdt, ML; Vignau, RP, A derivative-free method for solving box-constrained underdetermined nonlinear systems of equations, Appl. Math. Comput., 219, 6, 3198-3208 (2012) · Zbl 1309.65055
[11] Ferreira, OP; Gonçalves, MLN, Local convergence analysis of inexact Newton-like methods under majorant condition, Comput. Optim Appl., 48, 1, 1-21 (2011) · Zbl 1279.90195
[12] Floudas, C.A., et al.: Handbook of test problems in local and global optimization. In: Nonconvex Optimization and its Applications, vol. 33. Kluwer Academic, Dordrecht (1999) · Zbl 0943.90001
[13] Freund, R., A transpose-free quasi-minimal residual algorithm for non-hermitian linear systems, SIAM J. Sci. Comput., 14, 2, 470-482 (1993) · Zbl 0781.65022
[14] Freund, R., Grigas, P.: New analysis and results for the Frank-Wolfe method. Math. Program. pp. 1-32 (2014) · Zbl 1342.90101
[15] Freund, RW; Nachtigal, NM, QMR: a quasi-minimal residual method for non-hermitian linear systems, Numer. Math., 60, 1, 315-339 (1991) · Zbl 0754.65034
[16] Gonçalves, MLN, Inexact gauss-Newton like methods for injective-overdetermined systems of equations under a majorant condition, Numer. Algorithms, 72, 2, 377-392 (2016) · Zbl 1343.65059
[17] Gonçalves, MLN; Melo, JG, A Newton conditional gradient method for constrained nonlinear systems, J. Comput. Appl Math., 311, 473-483 (2017) · Zbl 1382.65141
[18] Gonçalves, MLN; Oliveira, FR, An inexact Newton-like conditional gradient method for constrained nonlinear systems, Appl. Num. Math., 132, 22-34 (2018) · Zbl 06902340
[19] Jaggi, M.: Revisiting Frank-Wolfe: projection-free sparse convex optimization. In: Proceedings of the 30th International Conference On Machine Learning (ICML-13), vol. 28, pp 427-435 (2013)
[20] Kanzow, C.: An active set-type Newton method for constrained nonlinear systems. In: Ferris, M.C., Mangasarian, O.L., Pang, J.-S. (eds.) Complementarity: Applications, Algorithms and Extensions, vol. 50 of Appl. Optim., pp 179-200. Springer (2001) · Zbl 0983.90060
[21] Kelley, C.: Iterative methods for linear and nonlinear equations. Society for Industrial and Applied Mathematics (1995) · Zbl 0832.65046
[22] Kozakevich, DN; Martinez, JM; Santos, SA, Solving nonlinear systems of equations with simple constraints, Comput. Appl Math., 16, 215-235 (1997)
[23] La Cruz, W., A projected derivative-free algorithm for nonlinear equations with convex constraints, Optim. Methods Softw., 29, 1, 24-41 (2014) · Zbl 1285.65028
[24] La Cruz, W.; Martínez, JM; Raydan, M., Spectral residual method without gradient information for solving large-scale nonlinear systems of equations, Math Comp., 75, 255, 1429-1448 (2006) · Zbl 1122.65049
[25] Li, DH; Fukushima, MA, Derivative-free line search and global convergence of Broyden-like method for nonlinear equations, Optim. Methods Softw., 13, 3, 181-201 (2000) · Zbl 0960.65076
[26] Lukšan, L., Vlček, J.: Sparse and partially separable test problems for unconstrained and equality constrained optimization. Technical Report N. 767, Institute of Computer Science, Academy of Sciences of the Czech Republic (1999) · Zbl 0955.90102
[27] Lukšan, L., Vlček, J.: Test problems for unconstrained optimization. Technical Report N. 897, Institute of Computer Science, Academy of Sciences of the Czech Republic (2003) · Zbl 1108.90029
[28] Macconi, M.; Morini, B.; Porcelli, M., Trust-region quadratic methods for nonlinear systems of mixed equalities and inequalities, Appl. Num. Math., 59, 5, 859-876 (2009) · Zbl 1165.65030
[29] Marini, L.; Morini, B.; Porcelli, M., Quasi-Newton methods for constrained nonlinear systems: complexity analysis and applications, Comput. Optim. Appl., 71, 147-170 (2018) · Zbl 1405.90143
[30] Martinez, MJ, Quasi-inexact-Newton methods with global convergence for solving constrained nonlinear systems, Nonlinear Anal., 30, 1, 1-7 (1997) · Zbl 0898.65024
[31] Moré, JJ; Garbow, BS; Hillstrom, KE, Testing unconstrained optimization software, ACM Trans. Math Softw., 7, 1, 17-41 (1981) · Zbl 0454.65049
[32] Morini, B.; Porcelli, M.; Toint, PL, Approximate norm descent methods for constrained nonlinear systems, Math. Comput., 87, 311, 1327-1351 (2018) · Zbl 1383.65051
[33] Schubert, LK, Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian, Math. Comp., 24, 27-30 (1970) · Zbl 0198.49402
[34] Tsoulos, IG; Stavrakoudis, A., On locating all roots of systems of nonlinear equations inside bounded domain using global optimization methods, Nonlinear Anal. Real World Appl., 11, 4, 2465-2471 (2010) · Zbl 1193.65078
[35] Wang, P.; Zhu, D., An inexact derivative-free Levenberg-Marquardt method for linear inequality constrained nonlinear systems under local error bound conditions, Appl. Math. Comput., 282, 32-52 (2016) · Zbl 1410.49037
[36] Zhang, Y.; Zhu, D-T, Inexact Newton method via Lanczos decomposed technique for solving box-constrained nonlinear systems, Appl. Math Mech., 31, 12, 1593-1602 (2010) · Zbl 1275.65030
[37] Zhu, D., An affine scaling trust-region algorithm with interior backtracking technique for solving bound-constrained nonlinear systems, J. Comput. App. Math., 184, 2, 343-361 (2005) · Zbl 1087.65047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.