×

zbMATH — the first resource for mathematics

Hypocoercivity properties of adaptive Langevin dynamics. (English) Zbl 1434.60236
MSC:
60J70 Applications of Brownian motions and diffusion theory (population genetics, absorption problems, etc.)
35B40 Asymptotic behavior of solutions to PDEs
46N30 Applications of functional analysis in probability theory and statistics
35Q84 Fokker-Planck equations
65C30 Numerical solutions to stochastic differential and integral equations
Software:
MNIST
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] D. Bakry, F. Barthe, P. Cattiaux, and A. Guillin, A simple proof of the Poincaré inequality for a large class of probability measures, Electron. Commun. Probab., 13 (2008), pp. 60-66. · Zbl 1186.26011
[2] R. N. Bhattacharya, On the functional central limit theorem and the law of the iterated logarithm for Markov processes, Z. Wahrsch. Verw. Gebiete, 60 (1982), pp. 185-201. · Zbl 0468.60034
[3] N. Bou-Rabee and H. Owhadi, Long-run accuracy of variational integrators in the stochastic context, SIAM J. Numer. Anal., 48 (2010), pp. 278-297, https://doi.org/10.1137/090758842. · Zbl 1215.65012
[4] E. Cances, F. Legoll, and G. Stoltz, Theoretical and numerical comparison of some sampling methods for molecular dynamics, ESAIM Math. Model. Numer. Anal., 41 (2007), pp. 351-389. · Zbl 1138.82341
[5] T. Chen, E. Fox, and C. Guestrin, Stochastic gradient Hamiltonian Monte Carlo, in International Conference on Machine Learning, Beijing, China, 2014, pp. 1683-1691.
[6] X. Cheng, N. S. Chatterji, P. L. Bartlett, and M. I. Jordan, Underdamped Langevin MCMC: A non-asymptotic analysis, in Proceedings of the 31st Conference on Learning Theory, Proc. Mach. Learn. Res. 75, PMLR, 2018, pp. 300-323.
[7] N. Ding, Y. Fang, R. Babbush, C. Chen, R. D. Skeel, and H. Neven, Bayesian sampling using stochastic gradient thermostats, in Advances in Neural Information Processing Systems, NeurIPS, San Diego, CA, 2014, pp. 3203-3211.
[8] J. Dolbeault, C. Mouhot, and C. Schmeiser, Hypocoercivity for kinetic equations with linear relaxation terms, C. R. Math. Acad. Sci. Paris, 347 (2009), pp. 511-516. · Zbl 1177.35054
[9] J. Dolbeault, C. Mouhot, and C. Schmeiser, Hypocoercivity for linear kinetic equations conserving mass, Trans. Amer. Math. Soc., 367 (2015), pp. 3807-3828. · Zbl 1342.82115
[10] A. Eberle, Reflection coupling and Wasserstein contractivity without convexity, C. R. Math. Acad. Sci. Paris, 349 (2011), pp. 1101-1104. · Zbl 1229.60091
[11] A. Eberle, A. Guillin, and R. Zimmer, Couplings and quantitative contraction rates for Langevin dynamics, Ann. Probab., 47 (2019), pp. 1982-2010. · Zbl 07114709
[12] M. Hairer and J. C. Mattingly, Yet another look at Harris ergodic theorem for Markov chains, in Seminar on Stochastic Analysis, Random Fields and Applications VI, Progr. Probab. 63, Springer, Berlin, 2011, pp. 109-117. · Zbl 1248.60082
[13] D. P. Herzog, Exponential relaxation of the Nosé-Hoover equation under Brownian heating, Commun. Math. Sci., 16 (2018), pp. 2231-2260. · Zbl 1419.82042
[14] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), pp. 147-171. · Zbl 0156.10701
[15] A. Iacobucci, S. Olla, and G. Stoltz, Convergence rates for nonequilibrium Langevin dynamics, Ann. Math. Qué., 43 (2019), pp. 73-98. · Zbl 1419.82044
[16] A. Jones and B. Leimkuhler, Adaptive stochastic methods for sampling driven molecular systems, J. Chem. Phys., 135 (2011), 084125.
[17] W. Kliemann, Recurrence and invariant measures for degenerate diffusions, Ann. Probab., 15 (1987), pp. 690-707. · Zbl 0625.60091
[18] M. Kopec, Weak backward error analysis for Langevin process, BIT, 55 (2015), pp. 1057-1103. · Zbl 1346.65001
[19] Y. LeCun and C. Cortes, MNIST handwritten digit database, 2010, http://yann.lecun.com/exdb/mnist/.
[20] B. Leimkuhler and C. Matthews, Molecular Dynamics. With Deterministic and Stochastic Numerical Methods, Interdiscip. Appl. Math. 39, Springer, Cham, 2015. · Zbl 1351.82001
[21] B. Leimkuhler, C. Matthews, and G. Stoltz, The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics, IMA J. Numer. Anal., 36 (2015), pp. 13-79. · Zbl 1347.65014
[22] B. Leimkuhler and X. Shang, Adaptive thermostats for noisy gradient systems, SIAM J. Sci. Comput., 38 (2016), pp. A712-A736, https://doi.org/10.1137/15M102318X. · Zbl 1382.65019
[23] T. Lelièvre and G. Stoltz, Partial differential equations and stochastic methods in molecular dynamics, Acta Numer., 25 (2016), pp. 681-880. · Zbl 1348.82065
[24] J. C. Mattingly, A. M. Stuart, and D. J. Higham, Ergodicity for SDEs and approximations: Locally Lipschitz vector fields and degenerate noise, Stochastic Process. Appl., 101 (2002), pp. 185-232. · Zbl 1075.60072
[25] S. P. Meyn and R. L. Tweedie, Stability of Markovian processes \textupII: Continuous-time processes and sampled chains, Adv. Appl. Probab., 25 (1993), pp. 487-517. · Zbl 0781.60052
[26] S. P. Meyn and R. L. Tweedie, Markov Chains and Stochastic Stability, Springer, New York, 2012. · Zbl 0925.60001
[27] S. Nosé, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys., 81 (1984), pp. 511-519.
[28] G. A. Pavliotis, Stochastic Processes and Applications, Springer, New York, 2016.
[29] G. A. Pavliotis and A. Vogiannou, Diffusive transport in periodic potentials: underdamped dynamics, Fluct. Noise Lett., 8 (2008), pp. L155-L173.
[30] L. Rey-Bellet, Ergodic properties of Markov processes, in Open Quantum Systems II, S. Attal, A. Joye, and C.-A. Pillet, eds., Lecture Notes in Math. 1881, Springer, Berlin, 2006, pp. 1-39. · Zbl 1126.60057
[31] J. Roussel and G. Stoltz, Spectral methods for Langevin dynamics and associated error estimates, ESAIM Math. Model. Numer. Anal., 52 (2018), pp. 1051-1083. · Zbl 1404.82050
[32] M. Sachs, B. Leimkuhler, and V. Danos, Langevin dynamics with variable coefficients and nonconservative forces: From stationary states to numerical methods, Entropy, 19 (2017), 647.
[33] X. Shang, Z. Zhu, B. Leimkuhler, and A. J. Storkey, Covariance-controlled adaptive Langevin thermostat for large-scale Bayesian sampling, in Advances in Neural Information Processing Systems, NeurIPS, San Diego, CA, 2015, pp. 37-45.
[34] D. Talay, Stochastic Hamiltonian systems: exponential convergence to the invariant measure, and discretization by the implicit Euler scheme, Markov Process. Rel. Fields, 8 (2002), pp. 163-198. · Zbl 1011.60039
[35] C. Várnai, N. Bernstein, L. Mones, and G. Csányi, Tests of an adaptive QM/MM calculation on free energy profiles of chemical reactions in solution, J. Phys. Chem. B, 117 (2013), pp. 12202-12211.
[36] C. Villani, Hypocoercivity, Mem. Amer. Math. Soc., 202 (2009), 950.
[37] M. Welling and Y. W. Teh, Bayesian learning via stochastic gradient Langevin dynamics, in Proceedings of the 28th International Conference on Machine Learning (ICML-11), Bellevue, WA, 2011, pp. 681-688.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.