×

zbMATH — the first resource for mathematics

Projection-based classification for functional data. (English) Zbl 1440.62404
Summary: The classification of functional data has many applications in a variety of problems. A popular method for functional data classification is based on distances of the observations to the class centroid. In this paper, we introduce a weighted version of the centroid classifier that is based on projection functions and can lead to asymptotically perfect classification. We select the projection functions so that they optimize classification performance. The superiority of the proposed method is shown by using a simulation study and two real data sets.
MSC:
62R10 Functional data analysis
62H30 Classification and discrimination; cluster analysis (statistical aspects)
Software:
fda (R)
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ramsay, JO; Silverman, B., Applied functional data analysis: methods and case studies. Springer series in statistics. (2002), New York (NY: Springer, New York (NY
[2] Ramsay, JO; Silverman, B., Functional data analysis (2005), New York: Springer, New York · Zbl 1079.62006
[3] Ferraty, F.; Vieu, P., Nonparametric functional data analysis (2006), New York: Springer, New York · Zbl 1119.62046
[4] Horváth, L.; Kokoszka, P., Inference for functional data with applications (2012), New York: Springer, New York · Zbl 1279.62017
[5] Francisco-Fernández, M.; Tarrio-Saavedra, J.; Mallik, A., A comprehensive classification of wood from thermogravimetric curves, Chemometr Intell Lab Syst, 118, 159-172 (2012)
[6] Song, J.; Deng, W.; LEE, H.; Kwon, D., Optimal classification for time-course gene expression data using functional data analysis, Comp Biol Chem, 32, 426-432 (2008) · Zbl 1158.62085
[7] Epifanio, I., Shape descriptors for classification of functional data, Technometrics, 50, 284-294 (2008)
[8] Alonso-Slaces, RM; Guyot, S.; Herrero, C., Chemometric classification of basque and french ciders based on their total polyphenol contents and CIELAB parameters, Food Chem, 91, 91-98 (2005)
[9] Japon-Lujan, R.; Ruiz-Jiménez, J.; de Castro, MDL., Discrimination and classification of olive tree varieties and cultivation zones by biophenol contents, J Agric Food Chem, 54, 9706-9712 (2006)
[10] Leng, X.; Müller, H-G., Classification using functional data analysis for temporal gene expression data, Bioinformatics, 22, 68-76 (2006)
[11] Alonso, AM; Casado, D.; Romo, J., Supervised classification for functional data: a weighted distance approach, Comp Statist Data Anal, 56, 2334-2346 (2012) · Zbl 1252.62061
[12] Ferraty, F.; Vieu, P., Curves discrimination: a nonparametric functional approach, Comput Statist Data Anal, 4, 161-173 (2003) · Zbl 1429.62241
[13] Biau, G.; Bunea, F.; Wegkamp, MH., Functional classification in Hilbert spaces, IEEE Trans Inform Theor, 51, 2163-2172 (2005) · Zbl 1285.94015
[14] Biau, G.; Cérou, F.; Guyader, A., Rates of convergence of the functional k-nearest neighbor estimate, IEEE Trans Inform Theor, 56, 2034-2040 (2010) · Zbl 1366.62080
[15] Cérou, F.; Guyader, A., Nearest neighbor classification in infinite dimension, ESAIM Prob Statist, 10, 340-355 (2006) · Zbl 1187.62115
[16] Wang, XH; Ray, S.; Mallick, BK., Bayesian curve classification using wavelets, J Am Statist Ass, 102, 962-973 (2007) · Zbl 05564424
[17] Araki, Y.; Konishi, S.; Kawano, S., Functional logistic discrimination via regularized basis expansions, Commun Statist Theor Methods, 38, 2944-2957 (2009) · Zbl 1175.62061
[18] Preda, C.; Saporta, G., PLS regression on a stochastic process, Comp Statist Data Anal, 48, 149-158 (2005) · Zbl 1429.62224
[19] Preda, C.; Saporta, G.; Lévéder, C., PLS classification of functional data, Comp Statist, 22, 223-235 (2007) · Zbl 1196.62086
[20] López-Pintado, S.; Romo, J., Depth-based classification for functional data, DIMACS Ser Discrete Math Theor Comput Sci, 72, 103-120 (2006)
[21] Cuevas, A.; Febrero, M.; Fraiman, R., Robust estimation and classification for functional data via projection-based depth notions, Comput Statist, 22, 481-496 (2007) · Zbl 1195.62032
[22] Sguera, C.; Galeano, P.; Lillo, RE., Spatial depth-based classification for functional data, Test, 23, 725-750 (2014) · Zbl 1312.62083
[23] Makinde, OS., Classification rules based on distribution functions of functional depth, Stat Pap, 60, 629-640 (2019) · Zbl 1432.62189
[24] Rossi, F.; Villa, N., Support vector machine for functional data classification, Neurocomputing, 69, 730-742 (2006)
[25] Martín-Barragán, B.; Lillo, RE; Romo, J., Interpretable support vector machines for functional data, Eur J Oper Res, 232, 146-155 (2014)
[26] Delaigle, A.; Hall, P., Achieving near perfect classification for functional data, J R Statist Soc B, 74, 267-286 (2012) · Zbl 1411.62164
[27] Dai, X.; Müller, H-G; Yao, F., Optimal Bayes classifiers for functional data and density ratios, Biometrika, 104, 545-560 (2017) · Zbl 07072227
[28] Delaigle, A.; Hall, P.; Pham, T., Clustering functional data into groups by using projections, J R Statist Soc B, 81, 271-304 (2019) · Zbl 1420.62270
[29] Delaigle, A.; Hall, P., Classification using censored functional data, J Am Statist Assoc, 108, 1269-1283 (2013) · Zbl 1288.62104
[30] Delaigle, A.; Hall, P.; Bathia, N., Componentwise classification and clustering of functional data, Biometrika, 99, 299-313 (2012) · Zbl 1244.62090
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.