×

zbMATH — the first resource for mathematics

Dead-core solutions for slightly non-isothermal diffusion-reaction problems with power-law kinetics. (English) Zbl 07203966
Summary: The paper deals with dead-core solutions to a non-isothermal reaction-diffusion problem with power-law kinetics for a single reaction that takes place in a catalyst pellet along with mass and heat transfer from the bulk phase to the outer pellet surface. The model boundary value problem for two coupled non-linear diffusion-reaction equations is solved using the semi-analytical method. The exact solutions are established under the assumption of a small temperature gradient in the pellet. The nonlinear algebraic expressions are derived for the critical Thiele modulus, dead-zone length, reactant concentration, and temperature profiles in catalyst pellets of planar geometry. The effects of the reaction order, Arrhenius number, energy generation function, Thiele modulus, and Biot numbers are investigated on the concentration and temperature profiles, dead-zone length, and critical Thiele modulus.
MSC:
80 Classical thermodynamics, heat transfer
35 Partial differential equations
Software:
HYBRJ; IPython; minpack; SciPy
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Temkin, M. I., Diffusion effects during the reaction on the surface pores of a spherical catalyst particle, Kinet. Catal., 16, 104-112 (1975)
[2] Constales, D.; Yablonsky, G.; D’hooge, D.; Thybaut, J.; Marin, G., Advanced Data Analysis and Modelling in Chemical Engineering (2016), Elsevier: Elsevier Amsterdam
[3] Szukiewicz, M.; Chmiel-Szukiewicz, E.; Kaczmarski, K.; Szałek, A., Dead zone for hydrogenation of propylene reaction carried out on commercial catalyst pellets, Open Chem., 17, 295-301 (2019)
[4] Pereira, F. M.; Oliveira, S. C., Occurrence of dead core in catalytic particles containing immobilized enzymes: analysis for the Michaelis-Menten kinetics and assessment of numerical methods, Bioproc. Biosyst. Eng., 39, 1717-1727 (2016)
[5] Islam, M. A.; Ehiraj, B.; Cheng, Ch. K.; Dubey, B. N.; Khan, Md M. R., Biofilm re-vitalization using hydrodynamic shear stress for stable power generation in microbial fuel cell, J. Electroanal. Chem., 844, 14-22 (2019)
[6] Andreev, V. V., Formation of a “dead zone” in porous structures during processes that proceeding under steady state and unsteady state conditions, Rev. J. Chem., 3, 239-269 (2013)
[7] Król, G.; Szukiewicz, M., Conditions of dead zone forming in porous catalyst pellets, Chem. Process. Eng., 39, 129-138 (2018)
[8] Król, G.; Szukiewicz, M.; Chutkowski, M., Formation of dead zone in catalytic particles in catalysis and biocatalysis - new alternative method of determination, Can. J. Chem. Eng., 97, 1525-1536 (2019)
[9] Yorks, R. L.; Bratlie, K. M.; Hile, L. R.; Jang, L. K., Dead zones in porous catalysts: concentration profiles and efficiency factors, Catal. Today, 160, 204-212 (2011)
[10] Tavera, E. M., Analytical expression for the non-isothermal effectiveness factor: the nth-order reaction in a slab geometry, Chem. Eng. Sci., 60, 907-916 (2005)
[11] Andreev, V. V.; Skrzypacz, P.; Golman, B., The formation of dead zones in nonisothermal porous catalyst with temperature-dependent diffusion coefficient, Int. J. Chem. Kinet., 51, 711-722 (2019)
[12] Sun, Y. P.; Liu, S. B.; Keith, S., Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by decomposition method, Chem. Eng. J., 102, 1-10 (2004)
[13] Abbasbandy, S., Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method, Chem. Eng. J., 136, 144-150 (2008)
[14] Magyari, E., Exact analytical solution of a nonlinear reaction-diffusion model in porous catalysts, Chem. Eng. J., 143, 167-171 (2008)
[15] Ellery, A. J.; Simpson, M. J., An analytical method to solve a general class of nonlinear reactive transport models, Chem. Eng. J., 169, 313-318 (2011)
[16] Skrzypacz, P.; Andreev, V. V.; Golman, B., Dead-core and non-dead-core solutions to diffusion-reaction problems for catalyst pellets with external mass transfer, Chem. Eng. J., 385, Article 123927 pp. (2020)
[17] Rosowski, F.; Hornung, A.; Hinrichsen, O.; Herein, D.; Muhler, M.; Ertl, G., Ruthenium catalysts for ammonia synthesis at high pressures: preparation, characterization, and power-law kinetics, Appl. Catal. A-Gen., 151, 443-460 (1997)
[18] Kobl, K.; Thomas, S.; Zimmermann, Y.; Parkhomenko, K.; Roger, A. C., Power-law kinetics of methanol synthesis from carbon dioxide and hydrogen on copper-zinc oxide catalysts with alumina or zirconia supports, Catal. Today, 270, 31-42 (2016)
[19] Paksoy, A. I.; Cansu, Y. A.; Burcu, S. C.; Aksoylu, A. E., Kinetic and mechanistic features of carbon dioxide reforming of methane over co-ce/zro2 catalysts, Int. J. Chem. Kinet., 51, 138-145 (2019)
[20] Barge, A. S.; Vaidya, P. D., Kinetics of wet air oxidation of sodium sulfide over heterogeneous iron catalyst, Int. J. Chem. Kinet., 52, 92-98 (2020)
[21] Golman, B., Chemical Reaction Engineering With IPython. Part I: Transport Processes and Reaction in Porous Pellets (2019), Ventus Publishing: Ventus Publishing London
[22] Finlayson, B. A., Nonlinear Analysis in Chemical Engineering (1980), McGraw Hill: McGraw Hill NJ
[23] Andrews, G.; Askey, R.; Roy, R., Special Functions (Encyclopedia of Mathematics and Its Applications) (2010), Cambridge University Press: Cambridge University Press Cambridge
[24] Abramowitz, M.; Stegun, I. A., Handbook of mathematical functions, united states department of commerce, Natl. Bur. Stand. (1972)
[25] E. Jones, T. Oliphant, P. Peterson et al., SciPy: open source scientific tools for python, http://www.scipy.org/ (2001). [Online; accessed 2020-02-20]
[26] Moré, J. J.; Sorensen, D. C.; Hillstrom, K. E.; Garbow, B. S., The minpack project, (Cowell, W. J., Sources and Development of Mathematical Software (1984), Prentice-Hall), 88-111
[27] Powell, M. J.D., A hybrid method for nonlinear equations, (Robinowitz, P., Numerical Methods for Nonlinear Algebraic Equations (1970), Gordon and Breach Science: Gordon and Breach Science London), 87-144
[28] Aris, R., The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Vol. I. The Theory of the Steady State (1975), Clarendon Press: Clarendon Press Oxford · Zbl 0315.76051
[29] Sabit, F.; Shakipov, M.; Skrzypacz, P.; Golman, B., Dead-core solutions to simple catalytic reaction problems in chemical engineering, Euroasian Chem. Technol. J., 21, 19-23 (2019)
[30] Skeel, R. D.; Berzins, M., A method for the spatial discretization of parabolic equations in one space variable, SIAM J. Sci. Comput., 11, 1-32 (1990) · Zbl 0701.65065
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.