×

zbMATH — the first resource for mathematics

Three-scale multiphysics finite element framework (FE\(^3\)) modelling fault reactivation. (English) Zbl 1442.74127
Summary: Fluid injection or production in petroleum reservoirs affects the reservoir stresses such that it can even sometime reactivate dormant faults in the vicinity. In the particular case of deep carbonate reservoirs, faults can also be chemically active and chemical dissolution of the fault core can transform an otherwise impermeable barrier to a flow channel. Due to the scale separation between the fault and the reservoir, the implementation of highly non-linear multiphysics processes for the fault, needed for such phenomenon, is not compatible with simpler poromechanics controlling the reservoir behaviour. This contribution presents a three-scale finite element framework using the REDBACK simulator to account for those multiphysics couplings in faults during fluid production. This approach links the reservoir (km) scale – implementing poromechanics both for the fault interface and its surrounding reservoir – with the fault at the meso-scale (m) - implementing a THMC reactivation model – and the micro-scale \(\micro\)m – implementing a hydro-chemical model on meshed \(\mu\)CT-scan images. This model can explain the permeability increase during fault reactivation and successfully replicate fault activation, slip evolution and deactivation features, predicted by common fault reactivation models, yet with continuous transitions between the sequences. The multiscale coupling allows to resolve the heterogeneous propagation of the fault slip which can be uncorrelated from the initial highest slip tendency location. We also demonstrate the advantage of dynamically upscaled laws compared to empirical ones as we show that a hydraulically imperceptible alteration of the microstructure’s geometry can lead to different durations of the reactivation event at the macro-scale.
MSC:
74L10 Soil and rock mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74F25 Chemical and reactive effects in solid mechanics
76S05 Flows in porous media; filtration; seepage
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Jolley, S. J.; Fisher, Q. J.; Ainsworth, R. B., Reservoir compartmentalization: an introduction, Geol. Soc. London Spec. Publ., 347, 1, 1-8 (2010)
[2] Wibberley, C. A.J.; Yielding, G.; Di Toro, G., Recent advances in the understanding of fault zone internal structure: a review, Geol. Soc. London Spec. Publ., 299, 1, 5-33 (2008), arXiv:https://sp.lyellcollection.org/content/299/1/5.full.pdf
[3] Wilson, M. P.; Foulger, G. R.; Gluyas, J. G.; Davies, R. J.; Julian, B. R., HiQuake: The human-induced earthquake database, Seismol. Res. Lett., 88, 6, 1560-1565 (2017)
[4] Keranen, K. M.; Weingarten, M.; Abers, G. A.; Bekins, B. A.; Ge, S., Sharp increase in central Oklahoma seismicity since 2008 induced by massive wastewater injection, Science, 345, 6195, 448-451 (2014)
[5] Sibson, R. H.; Robert, F.; Poulsen, K. H., High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits, Geol., 16, 6, 551-555 (1988)
[6] Aben, F. M.; Doan, M.-L.; Gratier, J.-P.; Renard, F., Experimental postseismic recovery of fractured rocks assisted by calcite sealing, Geophys. Res. Lett., 44, 14, 7228-7238 (2017)
[7] Serra de Souza, A. L.; Lima Falcão, F. O., R&D in reservoir geomechanics in Brazil: Perspectives and challenges, (OTC Brasil, Offshore Technology Conference (2015))
[8] Jaeger, J. C., Fundamentals of Rock Mechanics (2007), Wiley-Blackwell
[9] Dieterich, J. H., Modeling of rock friction: 1. Experimental results and constitutive equations, J. Geophys. Res., 84, B5, 2161-2168 (1979)
[10] Andrews, D. J., Rupture velocity of plane strain shear cracks, J. Geophys. Res., 81, 32, 5679-5687 (1976)
[11] Cappa, F.; Rutqvist, J., Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO_2, Int. J. Greenhouse Gas Control, 5, 2, 336-346 (2011)
[12] Rice, J. R., Heating and weakening of faults during earthquake slip, J. Geophys. Res.: Solid Earth, 111, B5 (2006)
[13] Wang, K.; Sun, W., A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning, Comput. Methods Appl. Mech. Engrg., 334, 337-380 (2018) · Zbl 1440.74130
[14] Olsson, R.; Barton, N., An improved model for hydromechanical coupling during shearing of rock joints, Int. J. Rock Mech. Min. Sci., 38, 3, 317-329 (2001)
[15] Bandis, S.; Lumsden, A.; Barton, N., Fundamentals of rock joint deformation, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 20, 6, 249-268 (1983)
[16] Zhang, Y.; Clennell, M. B.; Delle Piane, C.; Ahmed, S.; Sarout, J., Numerical modelling of fault reactivation in carbonate rocks under fluid depletion conditions - 2D generic models with a small isolated fault, J. Struct. Geol., 93, 17-28 (2016)
[17] Cleary, P. W.; Pereira, G. G.; Lemiale, V.; Delle Piane, C.; Clennell, M. B., Multiscale model for predicting shear zone structure and permeability in deforming rock, Comput. Part. Mech., 3, 2, 179-199 (2015)
[18] Alevizos, S.; Poulet, T.; Veveakis, E., Thermo-poro-mechanics of chemically active creeping faults. 1: Theory and steady state considerations, J. Geophys. Res.: Solid Earth, 119, 6, 4558-4582 (2014)
[19] Veveakis, E.; Poulet, T.; Alevizos, S., Thermo-poro-mechanics of chemically active creeping faults: 2. Transient considerations, J. Geophys. Res.: Solid Earth, 119, 6, 4583-4605 (2014)
[20] Poulet, T.; Veveakis, M.; Herwegh, M.; Buckingham, T.; Regenauer-Lieb, K., Modeling episodic fluid-release events in the ductile carbonates of the glarus thrust, Geophys. Res. Lett., 41, 20, 7121-7128 (2014)
[21] Poulet, T.; Veveakis, E.; Regenauer-Lieb, K.; Yuen, D. A., Thermo-poro-mechanics of chemically active creeping faults: 3. The role of serpentinite in episodic tremor and slip sequences, and transition to chaos, J. Geophys. Res.: Solid Earth, 119, 6, 4606-4625 (2014)
[22] Burchette, T. P., Carbonate rocks and petroleum reservoirs: a geological perspective from the industry, Geol. Soc. London Spec. Publ., 370, 1, 17-37 (2012)
[23] E. Scheidegger, A., The Physics of Flow Through Porous Media (1974), University of Toronto Press, URL https://www.amazon.com/physics-flow-through-porous-media/dp/0802018491?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0802018491
[24] Wong, R.; Li, Y., A deformation-dependent model for permeability changes in oil sand due to shear dilation, J. Can. Pet. Technol., 40, 08 (2001)
[25] Arns, C., Structure-property Relationships from Digital Images (2009), VDM Verlag, URL https://www.ebook.de/de/product/8210630/christoph_arns_structure_property_relationships_from_digital_images.html
[26] Mostaghimi, P.; Blunt, M. J.; Bijeljic, B., Computations of absolute permeability on micro-CT images, Math. Geosci., 45, 1, 103-125 (2012)
[27] Andrä, H.; Combaret, N.; Dvorkin, J.; Glatt, E.; Han, J.; Kabel, M.; Keehm, Y.; Krzikalla, F.; Lee, M.; Madonna, C.; Marsh, M.; Mukerji, T.; Saenger, E. H.; Sain, R.; Saxena, N.; Ricker, S.; Wiegmann, A.; Zhan, X., Digital rock physics benchmarks-part II: Computing effective properties, Comput. Geosci., 50, 33-43 (2013)
[28] Poulet, T.; Paesold, M.; Veveakis, M., Multi-physics modelling of fault mechanics using REDBACK: A parallel open-source simulator for tightly coupled problems, Rock Mech. Rock Eng., 50, 3, 733-749 (2017)
[29] Gaston, D.; Newman, C.; Hansen, G.; Lebrun-Grandié, D., MOOSE: A parallel computational framework for coupled systems of nonlinear equations, Nucl. Eng. Des., 239, 10, 1768-1778 (2009)
[30] Balay, S.; Gropp, W. D.; McInnes, L. C.; Smith, B. F., Efficient management of parallelism in object oriented numerical software libraries, (Arge, E.; Bruaset, A. M.; Langtangen, H. P., Modern Software Tools in Scientific Computing (1997), Birkhäuser Press), 163-202 · Zbl 0882.65154
[31] Regenauer-Lieb, K.; Yuen, D. A., Rapid conversion of elastic energy into plastic shear heating during incipient necking of the lithosphere, Geophys. Res. Lett., 25, 14, 2737-2740 (1998)
[32] Sulem, J.; Stefanou, I.; Veveakis, E., Stability analysis of undrained adiabatic shearing of a rock layer with cosserat microstructure, Granul. Matter, 13, 3, 261-268 (2011)
[33] Tung, R.; Poulet, T.; Alevizos, S.; Veveakis, E.; Regenauer-Lieb, K., Shear heating in creeping faults changes the onset of convection, Geophys. J. Int., 211, 1, 270-283 (2017)
[34] Keller, H. B., Numerical solution of bifurcation and nonlinear eigenvalue problems, applications of bifurcation theory, (Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems (1977)), 359-384
[35] Bratu, G., Sur les équations intégrales non linéaires, Bull. Soc. Math. France, 42, 113-142 (1914), URL http://www.numdam.org/item/BSMF_1914_42_113_0 · JFM 45.0525.03
[36] Veveakis, E.; Alevizos, S.; Vardoulakis, I., Chemical reaction capping of thermal instabilities during shear of frictional faults, J. Mech. Phys. Solids, 58, 9, 1175-1194 (2010) · Zbl 1429.74049
[37] Rattez, H.; Stefanou, I.; Sulem, J., The importance of Thermo-Hydro-Mechanical couplings and microstructure to strain localization in 3D continua with application to seismic faults. Part I: Theory and linear stability analysis, J. Mech. Phys. Solids, 115, 54-76 (2018)
[38] Peterie, S. L.; Miller, R. D.; Intfen, J. W.; Gonzales, J. B., Earthquakes in Kansas induced by extremely far-field pressure diffusion, Geophys. Res. Lett., 45, 3, 1395-1401 (2018)
[39] Terzaghi, K.v., Die berechnung der durchlassigkeitsziffer des tones aus dem verlauf der hydrodynamischen spannungserscheinungen, 125-138 (1923)
[40] Segall, P., Earthquakes triggered by fluid extraction, Geol., 17, 10, 942-946 (1989)
[41] Wiprut, D.; Zoback, M. D., Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea, Geol., 28, 7, 595-598 (2000)
[42] Dos Santos, M. D.L.; Oliveira, F. R., Fault reactivation as mechanism of early water production in unconsolidated sandstones reservoirs, (SPE Annual Technical Conference and Exhibition (2014), Society of Petroleum Engineers)
[43] Poulet, T.; Lesueur, M.; Kelka, U., Dynamic Modelling of Overprinted Impermeable Fault Gouges and Surrounding Damage Zones as Lower Dimensional Interfaces (2019), Center for Open Science
[44] Veveakis, E.; Alevizos, S.; Poulet, T., Episodic tremor and slip (ETS) as a chaotic multiphysics spring, Phys. Earth Planet. Inter., 264, 20-34 (2017)
[45] Blunt, M. J.; Bijeljic, B.; Dong, H.; Gharbi, O.; Iglauer, S.; Mostaghimi, P.; Paluszny, A.; Pentland, C., Pore-scale imaging and modelling, Adv. Water Resour., 51, 197-216 (2013)
[46] Morin, R. H., Negative correlation between porosity and hydraulic conductivity in sand-and-gravel aquifers at Cape Cod, Massachusetts, USA, J. Hydrol., 316, 1-4, 43-52 (2006)
[47] Nitka, M.; Combe, G.; Dascalu, C.; Desrues, J., Two-scale modeling of granular materials: a DEM-FEM approach, Granul. Matter, 13, 3, 277-281 (2011)
[48] Desrues, J.; Argilaga, A.; Caillerie, D.; Combe, G.; Nguyen, T. K.; Richefeu, V.; Pont, S. D., From discrete to continuum modelling of boundary value problems in geomechanics: An integrated FEM-DEM approach, Int. J. Numer. Anal. Methods Geomech., 43, 5, 919-955 (2019)
[49] Desrues, J.; Argilaga, A.; Pont, S. D.; Combe, G.; Caillerie, D.; kein Nguyen, T., Restoring mesh independency in FEM-DEM multi-scale modelling of strain localization using second gradient regularization, (Springer Series in Geomechanics and Geoengineering (2017), Springer International Publishing), 453-457
[50] Lesueur, M.; Casadiego, M. C.; Veveakis, M.; Poulet, T., Modelling fluid-microstructure interaction on elasto-visco-plastic digital rocks, Geomech. Energy Environ., 12, 1-13 (2017)
[51] van den Eijnden, A.; Bésuelle, P.; Collin, F.; Chambon, R.; Desrues, J., Modeling the strain localization around an underground gallery with a hydro-mechanical double scale model; effect of anisotropy, Comput. Geotech., 85, 384-400 (2017)
[52] Yoon, H.; Kang, Q.; Valocchi, A. J., Lattice Boltzmann-based approaches for pore-scale reactive transport, Rev. Mineral. Geochem., 80, 1, 393-431 (2015)
[53] Imperial College Consortium On Pore-Scale Modelling, H., C1 Carbonate (2014), Figshare
[54] Brinkman, H. C., A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Flow Turbul. Combust., 1, 1, 27 (1949) · Zbl 0041.54204
[55] P. Chapuis, R.; Aubertin, M., On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils, Can. Geotech. J., 40, 3, 616-628 (2003)
[56] Heijs, A. W.J.; Lowe, C. P., Numerical evaluation of the permeability and the Kozeny constant for two types of porous media, Phys. Rev. E, 51, 5, 4346-4352 (1995)
[57] Doyen, P. M., Permeability, conductivity, and pore geometry of sandstone, J. Geophys. Res., 93, B7, 7729 (1988)
[58] Imperial College Consortium On Pore-Scale Modelling, P. M., LV60A Sandpack (2014), Figshare
[59] Ergun, S.; Orning, A. A., Fluid flow through randomly packed columns and fluidized beds, Ind. Eng. Chem., 41, 6, 1179-1184 (1949)
[60] Hill, R., Elastic properties of reinforced solids: Some theoretical principles, J. Mech. Phys. Solids, 11, 5, 357-372 (1963) · Zbl 0114.15804
[61] Bear, J., Dynamics of Fluids in Porous Media (Environmental Science Series) (1972), American Elsevier Publishing
[62] Kouznetsova, V. G., Computational Homogenization for the Multi-Scale Analysis of Multi-Phase Materials (2004), Technische Universiteit Eindhoven, (Ph.D. thesis)
[63] Anderson, E. M., The dynamics of faulting, Trans. Edinburgh Geol. Soc., 8, 3, 387-402 (1905)
[64] Sulem, J.; Famin, V., Thermal decomposition of carbonates in fault zones: Slip-weakening and temperature-limiting effects, J. Geophys. Res., 114, B3 (2009)
[65] L’vov, B., (Simon, J., Thermal Decomposition of Solids and Melts. Thermal Decomposition of Solids and Melts, Hot Topics in Thermal Analysis and Calorimetry, vol. 7 (2007), Springer-Verlag GmbH), URL https://www.ebook.de/de/product/11432799/boris_v_l_vov_thermal_decomposition_of_solids_and_melts.html
[66] Scholz, C. H., The Mechanics of Earthquakes and Faulting (2002), Cambridge University Press
[67] Engelder, T.; Fischer, M. P., Influence of poroelastic behavior on the magnitude of minimum horizontal stress, Sh in overpressured parts of sedimentary basins, Geol., 22, 10, 949-952 (1994)
[68] Teufel, L. W.; Rhett, D. W.; Farrell, H. E., Effect of reservoir depletion and pore pressure drawdown on in situ stress and deformation in the ekofisk field, north sea, (The 32nd U.S. Symposium on Rock Mechanics (USRMS) (1991), American Rock Mechanics Association)
[69] Nacht, P. K.; De Oliveira, M.; Roehl, D. M.; Costa, A. M., Investigation of geological fault reactivation and opening, Mec. Comput., XXIX, 8687-8697 (2010)
[70] Lapusta, N.; Rice, J. R., Nucleation and early seismic propagation of small and large events in a crustal earthquake model, J. Geophys. Res.: Solid Earth, 108, B4 (2003)
[71] Segall, P.; Pollard, D. D., Nucleation and growth of strike slip faults in granite, J. Geophys. Res., 88, B1, 555 (1983)
[72] Reches, Z.; Lockner, D. A., Nucleation and growth of faults in brittle rocks, J. Geophys. Res.: Solid Earth, 99, B9, 18159-18173 (1994)
[73] Morris, A.; Ferrill, D. A.; Henderson, D. B., Slip-tendency analysis and fault reactivation, Geol., 24, 3, 275 (1996)
[74] Poulet, T.; Veveakis, M., A viscoplastic approach for pore collapse in saturated soft rocks using REDBACK: An open-source parallel simulator for Rock mEchanics with Dissipative feedBACKs, Comput. Geotech., 74, 211-221 (2016)
[75] Cueto-Felgueroso, L.; Vila, C.; Santillán, D.; Mosquera, J. C., Numerical modeling of injection-induced earthquakes using laboratory-derived friction laws, Water Resour. Res., 54, 12, 9833-9859 (2018)
[76] T. Poulet, M. Lesueur, L. Hue, M. Veveakis, K. Regenauer-Lieb, Modelling the formation of Bonanza-grade ore deposits, in: TIGeR Conference, 2018.
[77] T. Poulet, M. Lesueur, M. Veveakis, K. Regenauer-Lieb, Propagating mineralising fluids through chemical shear zones, in: AGU Fall Meeting, 2018.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.