×

zbMATH — the first resource for mathematics

Traveling wave solutions for the FPU chain: a constructive approach. (English) Zbl 1444.34077

MSC:
34K10 Boundary value problems for functional-differential equations
34K16 Heteroclinic and homoclinic orbits of functional-differential equations
34A33 Ordinary lattice differential equations
Software:
Ada95; MPFR
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chi H, Bell J and Hassard B 1986 Numerical solution of a nonlinear advance-delay differential equation from nerve conduction theory J. Math. Biol.24 583-601 · Zbl 0597.92009
[2] Adams J C 1887 On the expression of the product of any two Legendre’s coefficients by means of a series of Legendre’s coefficients Proc. R. Soc.27 63-71 · JFM 10.0337.01
[3] Friesecke G and Wattis J A D 1994 Existence theorem for solitary waves on lattices Commun. Math. Phys.161 391-418 · Zbl 0807.35121
[4] Smets D and Willem M 1997 Solitary waves with prescribed speed on infinite lattices J. Funct. Anal.149 266-75 · Zbl 0889.34059
[5] Friesecke G and Pego R L 1999 Solitary waves on FPU lattices: I. Qualitative properties, renormalization and continuum limit Nonlinearity12 1601 · Zbl 0962.82015
[6] Iooss G and Kirchgässner K 2000 Travelling waves in a chain of coupled nonlinear oscillators Commun. Math. Phys.211 439-64 · Zbl 0956.37055
[7] Iooss G 2000 Travelling waves in the Fermi-Pasta Ulam lattice Nonlinearity13 849 · Zbl 0960.37038
[8] Friesecke G and Pego R L 2002 Solitary waves on FPU lattices: II. Linear implies nonlinear stability Nonlinearity15 1343 · Zbl 1102.37311
[9] Buksman E and De Luca J 2003 Two-degree-of-freedom Hamiltonian for the time-symmetric two-body problem of the relativistic action-at-a-distance electrodynamics Phys. Rev. E 67 026219
[10] Friesecke G and Pego R L 2004 Solitary waves on FPU lattices: III. Howland-type Floquet theory Nonlinearity17 207 · Zbl 1103.37049
[11] Zgliczyński P 2004 Rigorous numerics for dissipative partial differential equations. II. Periodic orbit for the Kuramoto-Sivashinsky PDE—a computer-assisted proof Found. Comput. Math.4 157-85 · Zbl 1066.65105
[12] Pankov A 2005 Traveling Waves And Periodic Oscillations in Fermi-Pasta-Ulam Lattices (London: Imperial College Press) · Zbl 1088.35001
[13] James G and Sire Y 2005 Travelling breathers with exponentially small tails in a chain of nonlinear oscillators Commun. Math. Phys.257 51-85 · Zbl 1105.37048
[14] Gameiro M, Gedeon T, Kalies W, Kokubu H, Mischaikow K and Oka H 2007 Topological horseshoes of traveling waves for a fast-slow predator-prey system J. Dyn. Differ. Equ.19 23-654 · Zbl 1143.34032
[15] Kaddar A and Alaoui H T 2008 Fluctuations in a mixed IS-LM business cycle model Electron. J. Differ. Equ.134 1-9 · Zbl 1417.37297
[16] Minamoto T and Nakao M T 2010 A numerical verification method for a periodic solution of a delay differential equation J. Comput. Appl. Math.235 870-8 · Zbl 1202.65086
[17] Herrmann M and Rademacher J D M 2010 Heteroclinic travelling waves in convex FPU-type chains SIAM J. Math. Anal.42 1483-504 · Zbl 1232.37040
[18] Arioli G and Koch H 2010 Integration of dissipative PDEs: a case study SIAM J. Appl. Dyn. Syst.9 1119-33 · Zbl 1298.37071
[19] Pankov A and Rothos V M 2011 Traveling waves in Fermi-Pasta-Ulam lattices with saturable nonlinearities Discrete Contin. Dyn. Syst. A 30 835-49 · Zbl 1218.37109
[20] Hoffman A and Wayne C E 2013 A simple proof of the stability of solitary waves in the Fermi-Pasta-Ulam model near the KdV limit Fields Inst. Commun.64 185-92 · Zbl 1275.37035
[21] Arioli G and Koch H 2015 Existence and stability of traveling pulse solutions of the FitzHugh-Nagumo equation Nonlinear Anal.113 51-70 · Zbl 1304.35181
[22] Czechowski A and Zgliczyński P 2016 Existence of periodic solutions of the FitzHugh-Nagumo Equations for an Explicit Range of the Small Parameter SIAM J. Appl. Dyn. Syst.15 1615-55 · Zbl 1360.34069
[23] Szczelina R and Zgliczyński P 2018 Algorithm for rigorous integration of delay differential equations and the computer-assisted proof of periodic orbits in the Mackey-Glass equation Found. Comput. Math.18 1299-332 · Zbl 1402.65050
[24] Jaquette J, Lessard J-P and Mischaikow K 2017 Stability and uniqueness of slowly oscillating periodic solutions to Wright’s equation J. Differ. Equ.263 7263-86 · Zbl 1382.34069
[25] Kiss G and Lessard J-P 2017 Rapidly and slowly oscillating periodic oscillations of a delayed van der Pol oscillator J. Dyn. Differ. Equ.29 1233-57 · Zbl 1421.65016
[26] Matsue K 2017 Rigorous numerics for fast-slow systems with one-dimensional slow variable: topological shadowing approach Topol. Methods Nonlinear Anal.50 357-468 · Zbl 1383.34079
[27] Arioli G and Koch H 2019 Non-radial solutions for some semilinear elliptic equations on the disk Nonlin. Anal. TMA179 294-308 · Zbl 1404.35198
[28] Arioli G and Koch H 2019 Some breathers, multi-breathers for FPU-type chains Commun. Math. Phys.372 1117-46 · Zbl 07136926
[29] Wilczak D and Zgliczyński P 2017 Symbolic dynamics for Kuramoto-Sivashinsky PDE on the line—a computer-assisted proof (arXiv:1710.00329)
[30] Ada Reference Manual ISO/IEC 8652:2012(E) www.ada-auth.org/arm.html
[31] GNAT 2016 http://gnu.org/software/gnat/
[32] The Institute of Electrical and Electronics Engineers, Inc. IEEE Standard for Binary Floating-Point Arithmetic ANSI/IEEE Std 754-2008
[33] The MPFR library for multiple-precision floating-point computations with correct rounding www.mpfr.org/
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.