×

zbMATH — the first resource for mathematics

Stress-particle smoothed particle hydrodynamics: an application to the failure and post-failure behaviour of slopes. (English) Zbl 1442.74124
Summary: We present a new numerical approach in the framework of Smooth Particle Hydrodynamics (SPH) to solve the zero energy modes and tensile instabilities, without the need for the fine tuning of non-physical artificial parameters. The method uses a combination of stress-points and nodes and includes a new stress-point position updating scheme that also removes the need to implement artificial repulsive forces at the boundary. The model is validated for large deformation geomechanics problems, and is able to simulate strain localisation within soil samples and slopes. In particular, the new model produces stable and accurate results of the failure and post-failure of slopes, consisting of both cohesive and cohesionless materials, for the first time.
MSC:
74L05 Geophysical solid mechanics
74L10 Soil and rock mechanics
76M28 Particle methods and lattice-gas methods
Software:
D-Claw; TENSOR
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Iverson, R. M.; Reid, M. E.; LaHusen, R. G., Debris-flow mobilization from landslides, Annu. Rev. Earth Planet. Sci., 25, 1, 85-138 (1997)
[2] Crosta, G. B.; Imposimato, S.; Roddeman, D.; Chiesa, S.; Moia, F., Small fast-moving flow-like landslides in volcanic deposits: the 2001 Las Colinas Landslide (El Salvador), Eng. Geol., 79, 3-4, 185-214 (2005)
[3] Chen, W.-F.; Mizuno, E., Nonlinear Analysis in Soil Mechanics (1990), Elsevier
[4] Pastor, M.; Quecedo, M.; Zienkiewicz, O. C., A mixed displacement-pressure formulation for numerical analysis of plastic failure, Comput. Struct., 62, 1, 13-23 (1997) · Zbl 0910.73063
[5] Pastor, M.; Li, T.; Fernández-Merodo, J. A., Stabilized finite elements for harmonic soil dynamics problems near the undrained-incompressible limit, Soil Dyn. Earthq. Eng., 16, 3, 161-171 (1997)
[6] Eichenberger, J.; Nuth, M.; Laloui, L., Modeling landslides in partially saturated slopes subjected to rainfall infiltration, Mech. Unsaturated Geomater., 233-250 (2013)
[7] Cascini, L.; Cuomo, S.; Pastor, M.; Sacco, C., Modelling the post-failure stage of rainfall-induced landslides of the flow type, Can. Geotech. J., 50, 9, 924-934 (2013)
[8] George, D. L.; Iverson, R. M., A depth-averaged debris-flow model that includes the effects of evolving dilatancy II numerical predictions and experimental tests, Proc. R. Soc. A Math. Phys. Eng. Sci., 470, 2170, 20130820 (2014) · Zbl 1371.86007
[9] Crosta, G. B.; Imposimato, S.; Roddeman, D., Granular flows on erodible and non erodible inclines, Granul. Matter, 17, 5, 667-685 (2015)
[10] Li, S.; Liu, W. K., Meshfree and particle methods and their applications, Appl. Mech. Rev., 55, 1, 1-34 (2002)
[11] McDougall, S.; Hungr, O., A model for the analysis of rapid landslide motion across three-dimensional terrain, Can. Geotech. J., 41, 6, 1084-1097 (2004)
[12] Pastor, M.; Haddad, B.; Sorbino, G.; Cuomo, S.; Drempetic, V., A depth-integrated, coupled SPH model for flow-like landslides and related phenomena, Int. J. Numer. Anal. Methods Geomech., 33, 2, 143-172 (2009) · Zbl 1272.74464
[13] Bandara, S.; Soga, K., Coupling of soil deformation and pore fluid flow using material point method, Comput. Geotech., 63, 199-214 (2015)
[14] Calvo, L.; Haddad, B.; Pastor, M.; Palacios, D., Runout and deposit morphology of Bingham fluid as a function of initial volume: implication for debris flow modelling, Nat. Hazards, 75, 1, 489-513 (2015)
[15] Soga, K.; Alonso, E.; Yerro, A.; Kumar, K.; Bandara, S., Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method, Géotechnique, 1-26 (2015)
[16] Nguyen, C. T.; Nguyen, C. T.; Bui, H. H.; Nguyen, Giang D.; Fukagawa, R., A new SPH-based approach to simulation of granular flows using viscous damping and stress regularisation, Landslides, 14, 1, 69-81 (2017)
[17] Gingold, R. A.; Monaghan, J. J., Smoothed particle hydrodynamics: theory and application to non-spherical stars, Mon. Not. R. Astron. Soc., 181, 3, 375-389 (1977) · Zbl 0421.76032
[18] Lucy, L. B., A numerical approach to the testing of the fission hypothesis, Astron. J., 82, 1013-1024 (1977)
[19] Liu, M. B.; Liu, G. R., Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch. Comput. Methods Eng., 17, 1, 25-76 (2010) · Zbl 1348.76117
[20] Bui, H. H.; Fukagawa, R.; Sako, K.; Ohno, S., Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model, Int. J. Numer. Anal. Methods Geomech., 32, 12, 1537-1570 (2008) · Zbl 1273.74563
[21] Haddad, B.; Pastor, M.; Palacios, D.; Munoz-Salinas, E., A SPH depth integrated model for Popocatépetl 2001 lahar (Mexico): sensitivity analysis and runout simulation, Eng. Geol., 114, 3, 312-329 (2010)
[22] Bui, H. H.; Fukagawa, R.; Sako, K.; Wells, J. C., Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH), Geotechnique, 61, 7, 565-574 (2011)
[23] Pirulli, M.; Pastor, M., Numerical study on the entrainment of bed material into rapid landslides, Geotechnique, 62, 11, 959-972 (2012)
[24] Dai, Z.; Huang, Y.; Cheng, H.; Xu, Q., 3D numerical modeling using smoothed particle hydrodynamics of flow-like landslide propagation triggered by the 2008 Wenchuan earthquake, Eng. Geol., 180, 21-33 (2014)
[25] Maenchen, G.; Sack, S., The TENSOR code (1963), California Univ, Livermore Lawrence Radiation Lab
[26] Swegle, J. W.; Attaway, S. W.; Heinstein, M. W.; Mello, F. J.; Hicks, D. L., An analysis of smoothed particle hydrodynamics (1994), Sandia National Labs, Albuquerque, New Mexico (United States)
[27] Belytschko, T.; Guo, Y.; Liu, W. K.; Xiao, S. P., A unified stability analysis of meshless particle methods, Internat. J. Numer. Methods Engrg., 48, 9, 1359-1400 (2000) · Zbl 0972.74078
[28] Vidal, Y.; Bonet, J.; Huerta, A., Stabilized updated Lagrangian corrected SPH for explicit dynamic problems, Internat. J. Numer. Methods Engrg., 69, 13, 2687-2710 (2007) · Zbl 1194.74541
[29] Blanc, T., The Runge-Kutta Taylor-SPH model, a new improved model for soil dynamics problems (2011), Universidad Politécnica de Madrid, (Ph.D. thesis)
[30] Monaghan, J. J., SPH Without a tensile instability, J. Comput. Phys., 159, 2, 290-311 (2000) · Zbl 0980.76065
[31] Blanc, T.; Pastor, M., A stabilized smoothed particle hydrodynamics, Taylor-Galerkin algorithm for soil dynamics problems, Int. J. Numer. Anal. Methods Geomech., 37, 1, 1-30 (2013)
[32] Xu, R.; Stansby, P.; Laurence, D., Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach, J. Comput. Phys., 228, 18, 6703-6725 (2009) · Zbl 1261.76047
[33] Xu, X.; Yu, P., A technique to remove the tensile instability in weakly compressible SPH, Comput. Mech., 62, 5, 963-990 (2018) · Zbl 06981044
[34] Sun, P. N.; Colagrossi, A.; Marrone, S.; Antuono, M.; Zhang, A.-M., A consistent approach to particle shifting in the \(\delta \)-Plus-SPH model, Comput. Methods Appl. Mech. Engrg., 348, 912-934 (2019) · Zbl 1440.76124
[35] Patankar, S., Numerical Heat Transfer and Fluid Flow (1980), CRC press · Zbl 0521.76003
[36] Dyka, C. T.; Randles, P. W.; Ingel, R. P., An approach for tension instability in smoothed particle hydrodynamics (SPH), Comput. Struct., 57, 4, 573-580 (1995) · Zbl 0900.73945
[37] Randles, P.; Libersky, L., Normalized SPH with stress points, Internat. J. Numer. Methods Engrg., 48, 10, 1445-1462 (2000) · Zbl 0963.74079
[38] Vignjevic, R.; Campbell, J.; Libersky, L., A treatment of zero-energy modes in the smoothed particle hydrodynamics method, Comput. Methods Appl. Mech. Engrg., 184, 1, 67-85 (2000) · Zbl 0989.74079
[39] Rabczuk, T.; Belytschko, T., Cracking particles: a simplified meshfree method for arbitrary evolving cracks, Internat. J. Numer. Methods Engrg., 61, 13, 2316-2343 (2004) · Zbl 1075.74703
[40] Rabczuk, T.; Belytschko, T.; Xiao, S. P., Stable particle methods based on Lagrangian kernels, Comput. Methods Appl. Mech. Engrg., 193, 12-14, 1035-1063 (2004) · Zbl 1060.74672
[41] Rabczuk, T.; Areias, P. M.A.; Belytschko, T., A simplified mesh-free method for shear bands with cohesive surfaces, Internat. J. Numer. Methods Engrg., 69, 5, 993-1021 (2007) · Zbl 1194.74536
[42] Rabczuk, T.; Belytschko, T., A three-dimensional large deformation meshfree method for arbitrary evolving cracks, Comput. Methods Appl. Mech. Engrg., 196, 29-30, 2777-2799 (2007) · Zbl 1128.74051
[43] Rabczuk, T.; Gracie, R.; Song, J.-H.; Belytschko, T., Immersed particle method for fluid-structure interaction, Internat. J. Numer. Methods Engrg., 81, 1, 48-71 (2010) · Zbl 1183.74367
[44] Sanchez, J.; Randles, P., Dynamic failure simulation of quasi-brittle material in dual particle dynamics, Internat. J. Numer. Methods Engrg., 91, 11, 1227-1250 (2012)
[45] Sanchez, J.; Randles, P., A quasi-static dual particle method for solids based on dual particle dynamics, Internat. J. Numer. Methods Engrg., 94, 2, 183-203 (2013) · Zbl 1352.74488
[46] Perzyna, P., Fundamental problems in viscoplasticity, (Advances in Applied Mechanics, vol. 9 (1966), Elsevier), 243-377
[47] Johnson, G. C.; Bammann, D. J., A discussion of stress rates in finite deformation problems, Int. J. Solids Struct., 20, 8, 725-737 (1984) · Zbl 0546.73031
[48] Dienes, J. K., On the analysis of rotation and stress rate in deforming bodies, Acta Mech., 32, 4, 217-232 (1979) · Zbl 0414.73005
[49] Liu, M. B.; Liu, G. R.; Lam, K. Y., Constructing smoothing functions in smoothed particle hydrodynamics with applications, J. Comput. Appl. Math., 155, 2, 263-284 (2003) · Zbl 1065.76167
[50] Monaghan, J. J., Simulating free surface flows with SPH, J. Comput. Phys., 110, 2, 399-406 (1994) · Zbl 0794.76073
[51] Gómez-Gesteira, M.; Rogers, B. D.; Dalrymple, R. A.; Crespo, A. J., State-of-the-art of classical SPH for free-surface flows, J. Hydraul. Res., 48, S1, 6-27 (2010)
[52] Von Neumann, J.; Richtmyer, R. D., A method for the numerical calculation of hydrodynamic shocks, J. Appl. Phys., 21, 3, 232-237 (1950) · Zbl 0037.12002
[53] Monaghan, J. J., On the problem of penetration in particle methods, J. Comput. Phys., 82, 1, 1-15 (1989) · Zbl 0665.76124
[54] Flammer, I.; Blum, A.; Leiser, A.; Germann, P., Acoustic assessment of flow patterns in unsaturated soil, J. Appl. Geophys., 46, 2, 115-128 (2001)
[55] Adamo, F.; Andria, G.; Attivissimo, F.; Giaquinto, N., An acoustic method for soil moisture measurement, IEEE Trans. Instrum. Meas., 53, 4, 891-898 (2004)
[56] Chen, J. K.; Beraun, J. E., A generalized smoothed particle hydrodynamics method for nonlinear dynamic problems, Comput. Methods Appl. Mech. Engrg., 190, 1-2, 225-239 (2000) · Zbl 0967.76077
[57] Morris, J. P.; Fox, P. J.; Zhu, Y., Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys., 136, 1, 214-226 (1997) · Zbl 0889.76066
[58] Liu, M. B.; Shao, J. R.; Chang, J. Z., On the treatment of solid boundary in smoothed particle hydrodynamics, Sci. China Technol. Sci., 55, 1, 244-254 (2012) · Zbl 1421.76183
[59] Bui, H. H.; Fukagawa, R., An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: case of hydrostatic pore-water pressure, Int. J. Numer. Anal. Methods Geomech., 37, 1, 31-50 (2013)
[60] Mabssout, M.; Herreros, M. I., Runge-Kutta vs Taylor-SPH: Two time integration schemes for SPH with application to soil dynamics, Appl. Math. Model., 37, 5, 3541-3563 (2013) · Zbl 1351.76243
[61] Sluys, L. J., Wave propagation, localisation and dispersion in softening solids (1992), Delft University of Technology, (Ph.D. thesis)
[62] Antuono, M.; Bouscasse, B.; Colagrossi, A.; Marrone, S., A measure of spatial disorder in particle methods, Comput. Phys. Comm., 185, 10, 2609-2621 (2014)
[63] Oger, G.; Marrone, S.; Le Touzé, D.; De Leffe, M., SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms, J. Comput. Phys., 313, 76-98 (2016) · Zbl 1349.65537
[64] Quinlan, N. J.; Basa, M.; Lastiwka, M., Truncation error in mesh-free particle methods, Internat. J. Numer. Methods Engrg., 66, 13, 2064-2085 (2006) · Zbl 1110.76325
[65] Monaghan, J. J., Smoothed particle hydrodynamics, Ann. Rev. Astron. Astrophys., 30, 1, 543-574 (1992)
[66] Chen, W.-F., Limit Analysis and Soil Plasticity (2013), Elsevier
[67] Liu, W. K.; Jun, S.; Zhang, Y. F., Reproducing kernel particle methods, Internat. J. Numer. Methods Fluids, 20, 8-9, 1081-1106 (1995) · Zbl 0881.76072
[68] Li, S.; Liu, W. K., Reproducing kernel hierarchical partition of unity, part I - formulation and theory, Internat. J. Numer. Methods Engrg., 45, 3, 251-288 (1999)
[69] Chen, J. K.; Beraun, J. E.; Carney, T. C., A corrective smoothed particle method for boundary value problems in heat conduction, Internat. J. Numer. Methods Engrg., 46, 2, 231-252 (1999) · Zbl 0941.65104
[70] Blanc, T.; Pastor, M., A stabilized Runge-Kutta, Taylor smoothed particle hydrodynamics algorithm for large deformation problems in dynamics, Internat. J. Numer. Methods Engrg., 91, 13, 1427-1458 (2012)
[71] Hu, M.; Liu, M. B.; Xie, M. W.; Liu, G. R., Three-dimensional run-out analysis and prediction of flow-like landslides using smoothed particle hydrodynamics, Environ. Earth Sci., 73, 4, 1629-1640 (2015)
[72] Gray, J. P.; Monaghan, J. J.; Swift, R. P., SPH elastic dynamics, Comput. Methods Appl. Mech. Engrg., 190, 49-50, 6641-6662 (2001) · Zbl 1021.74050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.