zbMATH — the first resource for mathematics

Time-distributed optimization for real-time model predictive control: stability, robustness, and constraint satisfaction. (English) Zbl 1447.93090
First, it is presented a general system theoretic framework for analyzing a broad class of time-distributed optimization algorithms. This framework applies to any model predictive control feedback law that is locally input-to-state stable combined with any optimization algorithm whose convergence rate that is at least locally \(q\)-linear. Moreover, the existence of a joint region of attraction for the state and solution estimate is established. Next, the proposed theoretical framework is applied to a real-time iteration scheme which uses a Gauss-Newton hessian approximation and solves a single quadratic program per sampling instant. The robustness of this scheme is established. Also, the effect of the number of the sequential quadratic programming iterations performed at each sampling instant is analyzed and sufficient conditions for robust constraint satisfaction are obtained. At last, simulation results concerning a bicycle model of a sedan illustrate the proposed approach.

93B45 Model predictive control
93D25 Input-output approaches in control theory
90C31 Sensitivity, stability, parametric optimization
Full Text: DOI
[1] Albin, Thivaharan; Ritter, Dennis; Liberda, Norman; Quirynen, Rien; Diehl, Moritz, In-vehicle realization of nonlinear MPC for gasoline two-stage turbocharging airpath control, IEEE Transactions on Control Systems Technology, 26, 5, 1606-1618 (2018)
[2] Allan, Douglas A.; Bates, Cuyler N.; Risbeck, Michael J.; Rawlings, James B., On the inherent robustness of optimal and suboptimal nonlinear MPC, Systems & Control Letters, 106, 68-78 (2017) · Zbl 1376.93033
[3] Andersson, Joel; Åkesson, Johan; Diehl, Moritz, CasADi: A Symbolic package for automatic differentiation and optimal control, (Recent advances in algorithmic differentiation (2012), Springer), 297-307 · Zbl 1251.65020
[4] Boggs, Paul T.; Tolle, Jon W., Sequential quadratic programming, Acta Numerica, 4, 1-51 (1995) · Zbl 0828.65060
[5] Di Pillo, G.; Grippo, L., Exact penalty functions in constrained optimization, SIAM Journal on Control and Optimization, 27, 6, 1333-1360 (1989) · Zbl 0681.49035
[6] Diehl, Moritz; Bock, Hans Georg; Schlöder, Johannes P., A real-time iteration scheme for nonlinear optimization in optimal feedback control, SIAM Journal on Control and Optimization, 43, 5, 1714-1736 (2005) · Zbl 1078.65060
[7] Diehl, Moritz; Findeisen, Rolf; Allgöwer, Frank, A stabilizing real-time implementation of nonlinear model predictive control, (Real-time PDE-constrained optimization (2007), SIAM), 25-52 · Zbl 1226.93065
[8] Diehl, Moritz; Findeisen, Rolf; Allgöwer, Frank; Bock, Hans Georg; Schlöder, Johannes P., Nominal stability of real-time iteration scheme for nonlinear model predictive control, IEE Proceedings D (Control Theory and Applications), 152, 3, 296-308 (2005)
[9] Diehl, Moritz; Uslu, Ilknur; Findeisen, Rolf; Schwarzkopf, Stefan; Allgöwer, Frank; Bock, H. Georg; Bürner, Tobias; Gilles, Ernst Dieter; Kienle, Achim; Schlöder, Johannes P., Real-time optimization for large scale processes: Nonlinear model predictive control of a high purity distillation column, (Online optimization of large scale systems (2001), Springer), 363-383 · Zbl 0999.93056
[10] Dinh, Quoc Tran; Savorgnan, Carlo; Diehl, Moritz, Adjoint-based predictor-corrector sequential convex programming for parametric nonlinear optimization, SIAM Journal on Optimization, 22, 4, 1258-1284 (2012) · Zbl 1273.49040
[11] Domahidi, Alexander; Chu, Eric; Boyd, Stephen, ECOS: An SOCP solver for embedded systems, (Control conference (ECC), 2013 European (2013), IEEE), 3071-3076
[12] Dontchev, Asen L.; Kolmanovsky, Ilya; Krastanov, Mikhail I.; Nicotra, Marco; Veliov, Vladimir M., Lipschitz stability in discretized optimal control with application to SQP, SIAM Journal on Control and Optimization, 57, 1, 468-489 (2019) · Zbl 1407.49041
[13] Dontchev, Asen L.; Krastanov, Mikhail; Rockafellar, R. Tyrrell; Veliov, Vladimir M., An Euler-Newton continuation method for tracking solution trajectories of parametric variational inequalities, SIAM Journal on Control and Optimization, 51, 3, 1823-1840 (2013) · Zbl 1272.49012
[14] Dontchev, Asen L.; Rockafellar, R. T.yrrell, Implicit functions and solution mappings, Springer Monographs in Mathematics (2009) · Zbl 1178.26001
[15] Frasch, Janick V.; Gray, Andrew; Zanon, Mario; Ferreau, Hans Joachim; Sager, Sebastian; Borrelli, Francesco; Diehl, Moritz, An auto-generated nonlinear MPC algorithm for real-time obstacle avoidance of ground vehicles, (Control conference (ECC), 2013 European (2013), IEEE), 4136-4141
[16] Ghaemi, Reza; Sun, Jing; Kolmanovsky, Ilya V., An integrated perturbation analysis and sequential quadratic programming approach for model predictive control, Automatica, 45, 10, 2412-2418 (2009) · Zbl 1179.93128
[17] Graichen, Knut, A fixed-point iteration scheme for real-time model predictive control, Automatica, 48, 7, 1300-1305 (2012) · Zbl 1246.93042
[18] Graichen, Knut; Kugi, Andreas, Stability and incremental improvement of suboptimal MPC without terminal constraints, IEEE Transactions on Automatic Control, 55, 11, 2576-2580 (2010) · Zbl 1368.93538
[19] Gros, Sébastien, An economic NMPC formulation for wind turbine control, (Decision and control (CDC), 2013 IEEE 52nd annual conference on (2013), IEEE), 1001-1006
[20] Gros, Sébastien; Zanon, Mario; Quirynen, Rien; Bemporad, Alberto; Diehl, Moritz, From linear to nonlinear MPC: bridging the gap via the real-time iteration, International Journal of Control, 1-19 (2016) · Zbl 1430.93062
[21] Grüne, Lars; Pannek, Jürgen, Analysis of unconstrained NMPC schemes with incomplete optimization, (Proceedings of the 8th IFAC symposium on nonlinear control systems-NOLCOS (2010)), 238-243
[22] Grüne, Lars; Pannek, Jürgen, Nonlinear model predictive control, (Nonlinear model predictive control (2017), Springer), 45-69 · Zbl 1429.93003
[23] Herceg, Martin; Kvasnica, Michal; Jones, Colin N.; Morari, Manfred, Multi-parametric toolbox 3.0, (Control conference (ECC), 2013 European (2013), IEEE), 502-510
[24] Houska, Boris; Ferreau, Hans Joachim; Diehl, Moritz, ACADO Toolkit an open source framework for automatic control and dynamic optimization, Optimal Control Applications & Methods, 32, 3, 298-312 (2011) · Zbl 1218.49002
[25] Ilzhöfer, A.; Houska, Boris; Diehl, Moritz, Nonlinear MPC of kites under varying wind conditions for a new class of large-scale wind power generators, International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, 17, 17, 1590-1599 (2007) · Zbl 1131.93333
[26] Izmailov, Alexey F.; Solodov, Mikhail V., Newton-type methods for optimization and variational problems (2014), Springer · Zbl 1304.49001
[27] Jäschke, Johannes; Yang, Xue; Biegler, Lorenz T., Fast economic model predictive control based on NLP-sensitivities, Journal of Process Control, 24, 8, 1260-1272 (2014)
[28] Jiang, Zhong-Ping; Lin, Yuandan; Wang, Yuan, Nonlinear small-gain theorems for discrete-time feedback systems and applications, Automatica, 40, 12, 2129-2136 (2004) · Zbl 1077.93034
[29] Jiang, Zhong-Ping; Wang, Yuan, Input-to-state stability for discrete-time nonlinear systems, Automatica, 37, 6, 857-869 (2001) · Zbl 0989.93082
[30] Josephy, Norman H., Newton’s method for generalized equations (1979), Wisconsin Univ-Madison Mathematics Research Center
[31] Kelley, C. T., Iterative methods for linear and nonlinear equations, Frontiers in Applied Mathematics, 16, 575-601 (1995)
[32] Kelley, Carl T., Iterative methods for optimization (1999), SIAM · Zbl 0934.90082
[33] Liao-McPherson, Dominic; Huang, Mike; Kolmanovsky, Ilya, A regularized and smoothed Fischer-Burmeister method for quadratic programming with applications to model predictive control, IEEE Transactions on Automatic Control (2018) · Zbl 07082518
[34] Liao-McPherson, D., Nicotra, M., & Kolmanovsky, I. (2018). A semismooth predictor corrector method for real-time constrained parametric optimization with applications in model predictive control. In 2018 IEEE conference on decision and control.
[35] Liao-McPherson, D., Nicotra, M. M., & Kolmanovsky, I. V. (2019). A semismooth predictor corrector method for suboptimal model predictive control. In 2019 18th European control conference (pp. 2749-2755).
[36] Limon, D.; Alamo, T.; Raimondo, D. M.; De La Peña, D. Muñoz; Bravo, J. M.; Ferramosca, A.; Camacho, E. F., Input-to-state stability: a unifying framework for robust model predictive control, (Nonlinear model predictive control (2009), Springer), 1-26 · Zbl 1195.93128
[37] Liniger, Alexander; Domahidi, Alexander; Morari, Manfred, Optimization-based autonomous racing of 1: 43 scale RC cars, Optimal Control Applications & Methods, 36, 5, 628-647 (2015) · Zbl 1330.93094
[38] Nicotra, M. M.; Liao-McPherson, D.; Kolmanovsky, I. V., Embedding constrained model predictive control in a continuous-time dynamic feedback, IEEE Transactions on Automatic Control, 64, 5, 1932-1946 (2019) · Zbl 07082422
[39] Nocedal, Jorge; Wright, Stephen, Numerical optimization (2006), Springer Science & Business Media · Zbl 1104.65059
[40] Pang, Jong-Shi, Error bounds in mathematical programming, Mathematical Programming, 79, 1-3, 299-332 (1997) · Zbl 0887.90165
[41] Pannocchia, Gabriele; Rawlings, James B.; Wright, Stephen J., Conditions under which suboptimal nonlinear MPC is inherently robust, Systems & Control Letters, 60, 9, 747-755 (2011) · Zbl 1226.93110
[42] Patrinos, Panagiotis; Bemporad, Alberto, An accelerated dual gradient-projection algorithm for embedded linear model predictive control, IEEE Transactions on Automatic Control, 59, 1, 18-33 (2014) · Zbl 1360.93400
[43] Rao, Christopher V.; Wright, Stephen J.; Rawlings, James B., Application of interior-point methods to model predictive control, Journal of Optimization Theory and Applications, 99, 3, 723-757 (1998) · Zbl 0973.90092
[44] Rawlings, James Blake; Mayne, David Q.; Diehl, Moritz, Model predictive control: Theory, computation and design (2018), Nob Hill Pub.
[45] Robinson, Stephen M., Strongly regular generalized equations, Mathematics of Operations Research, 5, 1, 43-62 (1980) · Zbl 0437.90094
[46] Rockafellar, R. Tyrrell; Wets, Roger J.-B., Variational analysis: Vol. 317 (2009), Springer Science & Business Media
[47] Rubagotti, Matteo; Patrinos, Panagiotis; Bemporad, Alberto, Stabilizing linear model predictive control under inexact numerical optimization, IEEE Transactions on Automatic Control, 59, 6, 1660-1666 (2014)
[48] Schmid, Claudia; Biegler, Lorenz T., Quadratic programming methods for reduced hessian SQP, Computers & Chemical Engineering, 18, 9, 817-832 (1994)
[49] Scokaert, Pierre O. M.; Mayne, David Q.; Rawlings, James B., Suboptimal model predictive control (feasibility implies stability), IEEE Transactions on Automatic Control, 44, 3, 648-654 (1999) · Zbl 1056.93619
[50] Steinboeck, Andreas; Guay, Martin; Kugi, Andreas, A design technique for fast sampled-data nonlinear model predictive control with convergence and stability results, International Journal of Control, 1-17 (2017) · Zbl 1430.93068
[51] Teel, Andrew, A nonlinear small gain theorem for the analysis of control systems with saturation, IEEE Transactions on Automatic Control, 41, 9, 1256-1270 (1996) · Zbl 0863.93073
[52] Van Parys, Ruben; Verbandt, Maarten; Swevers, Jan; Pipeleers, Goele, Real-time proximal gradient method for embedded linear MPC, Mechatronics, 59, 1-9 (2019)
[53] Verschueren, Robin; Frison, Gianluca; Kouzoupis, Dimitris; van Duijkeren, Niels; Zanelli, Andrea; Quirynen, Rien; Diehl, Moritz, Towards a modular software package for embedded optimization, IFAC-PapersOnLine, 51, 20, 374-380 (2018)
[54] Vukov, Milan; Van Loock, Wannes; Houska, Boris; Ferreau, Hans Joachim; Swevers, Jan; Diehl, Moritz, Experimental validation of nonlinear MPC on an overhead crane using automatic code generation, (American control conference (2012), IEEE), 6264-6269
[55] Wurts, John; Stein, Jeffrey L.; Ersal, Tulga, Collision imminent steering using nonlinear model predictive control, (2018 annual American control conference (2018), IEEE), 4772-4777
[56] Zavala, Victor M.; Anitescu, Mihai, Real-time nonlinear optimization as a generalized equation, SIAM Journal on Control and Optimization, 48, 8, 5444-5467 (2010) · Zbl 1250.90055
[57] Zavala, Victor M.; Biegler, Lorenz T., The advanced-step NMPC controller: Optimality, stability and robustness, Automatica, 45, 1, 86-93 (2009) · Zbl 1154.93364
[58] Zhu, Qilun; Onori, Simona; Prucka, Robert, An economic nonlinear model predictive control strategy for SI engines: model-based design and real-time experimental validation, IEEE Transactions on Control Systems Technology, 99, 1-15 (2017)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.