×

A Berry-Esseén theorem for partial sums of functionals of heavy-tailed moving averages. (English) Zbl 1456.60051

Summary: In this paper we obtain Berry-Esseén bounds on partial sums of functionals of heavy-tailed moving averages, including the linear fractional stable noise, stable fractional ARIMA processes and stable Ornstein-Uhlenbeck processes. Our rates are obtained for the Wasserstein and Kolmogorov distances, and depend strongly on the interplay between the memory of the process, which is controlled by a parameter \(\alpha\), and its tail-index, which is controlled by a parameter \(\beta\). In fact, we obtain the classical \(1/\sqrt{n}\) rate of convergence when the tails are not too heavy and the memory is not too strong, more precisely, when \(\alpha\beta>3\) or \(\alpha\beta>4\) in the case of Wasserstein and Kolmogorov distance, respectively.
Our quantitative bounds rely on a new second-order Poincaré inequality on the Poisson space, which we derive through a combination of Stein’s method and Malliavin calculus. This inequality improves and generalizes a result by G. Last et al. [Probab. Theory Relat. Fields 165, No. 3–4, 667–723 (2016; Zbl 1347.60012)].

MSC:

60E15 Inequalities; stochastic orderings
60F05 Central limit and other weak theorems
60E07 Infinitely divisible distributions; stable distributions
60G52 Stable stochastic processes
60G57 Random measures

Citations:

Zbl 1347.60012

References:

[1] Basse-O’Connor, A., Heinrich, C., and Podolskij M.: On limit theory for functionals of stationary increments Lévy driven moving averages. Electron. J. Probab. 24(79), (2019), 1-42.. · Zbl 1467.60019
[2] Basse-O’Connor, A., Lachièze-Rey, R. and Podolskij, M.: Limit theorems for stationary increments Lévy driven moving averages. Ann. Probab. 45(6B), (2017), 4477-4528.. · Zbl 1427.60081 · doi:10.1214/16-AOP1170
[3] Campese, S., Nourdin, I. and Nualart, D.: Continuous Breuer-Major theorem: tightness and non-stationarity. To appear in Ann. Probab., (2020+). Preprint available at arXiv:1807.09740 [math.PR]. · Zbl 1468.60043 · doi:10.1214/19-AOP1357
[4] Bourguin, S., and Durastanti, C.: On high-frequency limits of U-statistics in Besov spaces over compact manifolds. Illinois J. Math. 61(1-2), (2017), 97-125.. · Zbl 1392.60006 · doi:10.1215/ijm/1520046211
[5] Bourguin, S., Durastanti, C., Marinucci, D. and Peccati, G.: Gaussian approximation of nonlinear statistics on the sphere. J. Math. Anal. Appl. 436(2), (2016), 1121-1148.. · Zbl 1383.60024 · doi:10.1016/j.jmaa.2015.12.036
[6] Chen, L. H. Y. and Shao, Q.-M.: Stein’s method for normal approximation. In An Introduction to Stein’s Method (edited by A.D. Barbour and L.H.Y. Chen), 2005, 1-59, Singapore University Press.. · Zbl 1072.62007 · doi:10.1142/5792
[7] Cohen, S. and Lindner, A.: A central limit theorem for the sample autocorrelations of a Lévy driven continuous time moving average process. J. Statist. Plann. Inference 143(8), (2013), 1295-1306.. · Zbl 1278.62140 · doi:10.1016/j.jspi.2013.03.022
[8] Decreusefond, L., Schulte, M. and Thäle, C.: Functional Poisson approximation in Kantorovich-Rubinstein distance with applications to U-statistics and stochastic geometry. Ann. Probab. 44(3), (2016), 2147-2197.. · Zbl 1347.60027 · doi:10.1214/15-AOP1020
[9] Döbler, C. and Peccati, G.: Quantitative de Jong theorems in any dimension. Electron. J. Probab. 22(2), (2017), 1-35.. · Zbl 1357.60023
[10] Eichelsbacher, P. and Thäle, C.: New Berry-Esseen bounds for non-linear functionals of Poisson random measures. Electron. J. Probab. 19(102), (2014), 1-25.. · Zbl 1307.60066
[11] Hoffmann-Jørgensen, J.: Probability with a View Toward Statistics. Vol. I. Chapman & Hall, New York, 1994.. · Zbl 0821.62003
[12] Hsing, T.: On the asymptotic distributions of partial sums of functionals of infinite-variance moving averages. Ann. Probab. 27(3), (1999), 1579-1599.. · Zbl 0961.60038 · doi:10.1214/aop/1022677460
[13] Kokoszka, P. S. and Taqqu, M. S.: Fractional ARIMA with stable innovations. Stochastic Process. Appl. 60(1), (1995), 19-47.. · Zbl 0846.62066 · doi:10.1016/0304-4149(95)00034-8
[14] Lachiéze-Rey, R. and Peccati, G.: Fine Gaussian fluctuations on the Poisson space, I: Contractions, cumulants and geometric random graphs. Electron. J. Probab. 18(32), (2013), 1-32.. · Zbl 1295.60015 · doi:10.1214/EJP.v18-2104
[15] Lachiéze-Rey, R. and Peccati, G.: Fine Gaussian fluctuations on the Poisson space II: rescaled kernels, marked processes and geometric U-statistics. Stochastic Process. Appl. 123, (2013), 4186-4218.. · Zbl 1294.60082 · doi:10.1016/j.spa.2013.06.004
[16] Last, G.: Stochastic analysis for Poisson processes. In Stochastic Analysis for Poisson Processes (edited by G. Peccati and M. Reitzner), 2016, Bocconi & Springer.. · Zbl 1303.60039 · doi:10.3150/12-BEJ494
[17] Last, G., Peccati, G. and Schulte, M. : Normal approximation on Poisson spaces: Mehler’s formula, second order Poincaré inequalities and stabilization. Probability Theory and Related Fields 165(3), (2016), 667-723.. · Zbl 1347.60012 · doi:10.1007/s00440-015-0643-7
[18] Last, G. and Penrose, M. D.: Lectures on the Poisson Process. IMS Textbook, Cambridge University Press, 2018.. · Zbl 1392.60004
[19] Last, G. and Penrose, M. D.: Poisson process Fock space representation, chaos expansion and covariance inequalities. Probab. Theory Related Fields 150(3-4), (2011), 663-690.. · Zbl 1233.60026 · doi:10.1007/s00440-010-0288-5
[20] Last, G., Penrose, M. D., Schulte, M. and Thäle, C.: Moments and central limit theorems for some multivariate Poisson functionals. Adv. Appl. Probab. 46(2), (2014), 348-364.. · Zbl 1350.60020 · doi:10.1239/aap/1401369698
[21] Marquardt, T.: Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12(6), (2006), 1099-1126.. · Zbl 1126.60038 · doi:10.3150/bj/1165269152
[22] Mazur, S., Otryakhin, D. and Podolskij, M.: Estimation of the linear fractional stable motion. Bernoulli 26(1), (2020), 226-252.. · Zbl 1453.60088 · doi:10.3150/19-BEJ1124
[23] Nourdin, I. and Peccati, G.: Stein’s method on Wiener chaos. Probab. Theory Related Fields 145(1-2), (2009), 75-118.. · Zbl 1175.60053 · doi:10.1007/s00440-008-0162-x
[24] Nourdin, I. and Peccati, G.: Normal Approximations with Malliavin Calculus. Cambridge University Press, Cambridge, 2012.. · Zbl 1266.60001
[25] Nourdin, I., Peccati, G. and Yang, X.: Multivariate normal approximation on the Wiener space: new bounds in the convex distance. 2020. Preprint available at arXiv:2001.02188 [math.PR]. · Zbl 1497.60027
[26] Peccati, G. and Reitzner, M.: Stochastic Analysis for Poisson Point Processes. Bocconi & Springer, 2016.. · Zbl 1350.60005
[27] Peccati, G., Solé, J. L., Taqqu, M. S, and Utzet, F.: Stein’s method and normal approximation of Poisson functionals. Ann. Probab. 38(2), (2010), 443-478.. · Zbl 1195.60037 · doi:10.1214/09-AOP477
[28] Peccati, G. and Prünster, I.: Linear and quadratic functionals of random hazard rates: an asymptotic analysis. Ann. Appl. Probab. 18(5), (2008), 1910-1943.. · Zbl 1153.60028 · doi:10.1214/07-AAP509
[29] Peccati, G. and Taqqu, M. S.: Central limit theorems for double Poisson integrals. Bernoulli 14(3), (2008), 791-821.. · Zbl 1165.60014 · doi:10.3150/08-BEJ123
[30] Pipiras, V. and Taqqu, M. S.: Decomposition of self-similar stable mixing moving averages. Probab. Theory Related Fields 123, (2002), 412-452.. · Zbl 1007.60026 · doi:10.1007/s004400200196
[31] Pipiras, V. and Taqqu, M. S.: The structure of self-similar stable mixing moving averages. Ann. Probab. 30, (2002), 898-932.. · Zbl 1016.60057 · doi:10.1214/aop/1023481011
[32] Pipiras, V. and Taqqu, M. S.: Central limit theorems for partial sums of bounded functionals of infinite-variance moving averages. Bernoulli 9, (2003), 833-855.. · Zbl 1053.60017 · doi:10.3150/bj/1066418880
[33] Pipiras, V., Taqqu, M. S. and Abry, P.: Bounds for the covariance of functions of infinite variance stable random variables with applications to central limit theorems and wavelet-based estimation. Bernoulli 13(4), (2007), 1091-1123.. · Zbl 1129.62021 · doi:10.3150/07-BEJ6143
[34] Pipiras, V. and Taqqu, M. S.: Long-Range Dependence and Self-Similarity. Cambridge University Press, 2017.. · Zbl 1377.60005
[35] Rajput, B.S. and Rosinski, J.: Spectral representations of infinitely divisible processes. Probab. Theory Related Fields 82(3), (1989), 451-487.. · Zbl 0659.60078 · doi:10.1007/BF00339998
[36] Rosinski, J.: Tempering stable processes. Stochastic Process. Appl. 117(6), (2007), 677-707.. · Zbl 1118.60037 · doi:10.1016/j.spa.2006.10.003
[37] Rosinski, J.: Representations and isomorphism identities for infinitely divisible processes. Ann. Probab. 46(6), (2018), 3229-3274.. · Zbl 1439.60021 · doi:10.1214/17-AOP1246
[38] Reitzner, M. and Schulte, M.: Central limit theorems for U-statistics of Poisson point processes. Ann. Probab. 41(6), (2013), 3879-3909.. · Zbl 1293.60061 · doi:10.1214/12-AOP817
[39] Samorodnitsky, G. and Taqqu, M. S.: Stable Non-Gaussian Random Processes. Chapman and Hall, 1994.. · Zbl 0925.60027
[40] Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68, 1999..
[41] Surgailis, D.: Stable limits of empirical processes of moving averages with infinite variance. Stochastic Process. Appl. 100, (2002), 255-274.. · Zbl 1059.60044 · doi:10.1016/S0304-4149(02)00103-5
[42] Surgailis, D.: Stable limits of sums of bounded functions of long-memory moving averages with finite variance. Bernoulli 10(2), (2004), 327-355.. · Zbl 1076.62017 · doi:10.3150/bj/1082380222
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.