×

zbMATH — the first resource for mathematics

Numerical scheme for the Fokker-Planck equations describing anomalous diffusions with two internal states. (English) Zbl 1444.76070
Summary: Recently, the fractional Fokker-Planck equations (FFPEs) with multiple internal states are built for the particles undergoing anomalous diffusion with different waiting time distributions for different internal states, which describe the distribution of positions of the particles [P. Xu and W. Deng, Math. Model. Nat. Phenom. 13, No. 1, Paper No. 10, 22 p. (2018; Zbl 1405.35189)]. In this paper, we first develop the Sobolev regularity of the FFPEs with two internal states, including the homogeneous problem with smooth and nonsmooth initial values and the inhomogeneous problem with vanishing initial value, and then we design the numerical scheme for the system of fractional partial differential equations based on the finite element method for the space derivatives and convolution quadrature for the time fractional derivatives. The optimal error estimates of the scheme under the above three different conditions are provided for both space semidiscrete and fully discrete schemes. Finally, one- and two-dimensional numerical experiments are performed to confirm our theoretical analysis and the predicted convergence order.

MSC:
76M10 Finite element methods applied to problems in fluid mechanics
76M99 Basic methods in fluid mechanics
76R50 Diffusion
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
26A33 Fractional derivatives and integrals
35R11 Fractional partial differential equations
Software:
FODE
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Barkai, E., Fractional Fokker-Planck equation, solution, and application, Phys. Rev. E, 63, 046118 (2001)
[2] Barkai, E.; Metzler, R.; Klafter, J., From continuous time random walks to the fractional Fokker-Planck equation, Phys. Rev. E, 61, 132-138 (2000)
[3] Bazhlekova, E.; Jin, BT; Lazarov, R.; Zhou, Z., An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid, Numer. Math., 131, 1-31 (2015) · Zbl 1325.76113
[4] Deng, WH, Numerical algorithm for the time fractional Fokker-Planck equation, J. Comput. Phys., 227, 1510-1522 (2007) · Zbl 1388.35095
[5] Deng, WH, Finite element method for the space and time fractional Fokker-Planck equation, SIAM J. Numer. Anal., 47, 204-226 (2009) · Zbl 1416.65344
[6] Deng, WH; Li, BY; Qian, Z.; Wang, H., Time discretization of a tempered fractional Feynman-Kac equation with measure data, SIAM J. Numer. Anal., 56, 3249-3275 (2018) · Zbl 1405.65141
[7] Gao, GH; Sun, ZZ; Zhang, HW, A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications, J. Comput. Phys., 259, 33-50 (2014) · Zbl 1349.65088
[8] Gunzburger, M.; Li, BY; Wang, JL, Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise, Math. Comp., 88, 1715-1741 (2018) · Zbl 1418.60077
[9] Heinsalu, E.; Patriarca, M.; Goychuk, I.; Schmid, G.; Hänggi, P., Fractional Fokker-Planck dynamics: numerical algorithm and simulations, Phys. Rev. E, 73, 046133 (2006)
[10] Jin, BT; Lazarov, R.; Zhou, Z., Error estimates for a semidiscrete finite element method for fractional order parabolic equations, SIAM J. Numer. Anal., 51, 445-466 (2013) · Zbl 1268.65126
[11] Jin, BT; Lazarov, R.; Pasciak, J.; Zhou, Z., Error analysis of a finite element method for the space-fractional parabolic equation, SIAM J. Numer. Anal., 52, 2272-2294 (2014) · Zbl 1310.65126
[12] Jin, BT; Lazarov, R.; Pasciak, J.; Zhou, Z., Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion, IMA J. Numer. Anal., 35, 561-582 (2015) · Zbl 1321.65142
[13] Jin, BT; Lazarov, R.; Zhou, Z., An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data, IMA J. Numer. Anal., 36, 197-221 (2015) · Zbl 1336.65150
[14] Jin, BT; Lazarov, R.; Zhou, Z., Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data, SIAM J. Sci. Comput., 38, A146-A170 (2016) · Zbl 1381.65082
[15] Jin, BT; Lazarov, R.; Zhou, Z., Numerical methods for time-fractional evolution equations with nonsmooth data: a concise overview, Comput. Methods Appl. Mech. Engrgy, 346, 332-358 (2019) · Zbl 1440.65138
[16] Jin, BT; Li, BY; Zhou, Z., Correction of high-order BDF convolution quadrature for fractional evolution equations, SIAM J. Sci. Comput., 39, A3129-A3152 (2017) · Zbl 1379.65078
[17] Langlands, TAM; Henry, BI, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 719-736 (2005) · Zbl 1072.65123
[18] Li, CP; Ding, HF, Higher order finite difference method for the reaction and anomalous-diffusion equation, Appl. Math. Model., 38, 3802-3821 (2014) · Zbl 1429.65188
[19] Li, WL; Xu, D., Finite central difference/finite element approximations for parabolic integro-differential equations, Computing, 90, 89-111 (2010) · Zbl 1207.65161
[20] Lin, YM; Xu, CJ, Finite difference/spectral approximations for the time-fractional diffusion equation, J. Comput. Phys., 225, 1533-1552 (2007) · Zbl 1126.65121
[21] Liu, FW; Anh, V.; Turner, I., Numerical solution of the space fractional Fokker-Planck equation, J. Comput. Appl. Math., 166, 209-219 (2004) · Zbl 1036.82019
[22] Lubich, C., Convolution quadrature and discretized operational calculus, I. Numer. Math., 52, 129-145 (1988) · Zbl 0637.65016
[23] Lubich, C., Convolution quadrature and discretized operational calculus, II. Numer. Math., 52, 413-425 (1988) · Zbl 0643.65094
[24] Lubich, C., Convolution quadrature revisited, BIT, 44, 503-514 (2004) · Zbl 1083.65123
[25] Lubich, C.; Sloan, IH; Thomée, V., Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term, Math. Comput., 65, 1-17 (1996) · Zbl 0852.65138
[26] Meerschaert, MM; Scheffler, H-P; Tadjeran, C., Finite difference methods for two-dimensional fractional dispersion equation, J. Comput. Phys., 211, 249-261 (2006) · Zbl 1085.65080
[27] Podlubny, I., Fractional Differential Equations (1999), Cambridge: Academic Press, Cambridge · Zbl 0918.34010
[28] Thomée, V., Galerkin Finite Element Methods for Parabolic Problems (2006), Berlin: Springer, Berlin · Zbl 1105.65102
[29] Xu, PB; Deng, WH, Fractional compound Poisson processes with multiple internal states, Math. Model. Nat. Phenom., 13, 10 (2018) · Zbl 1405.35189
[30] Xu, PB; Deng, WH, Lévy walk with multiple internal states, J. Stat. Phys., 173, 1598-1613 (2018) · Zbl 1403.60037
[31] Zeng, FH; Li, CP; Liu, FW; Turner, I., The use of finite difference/element approaches for solving the time-fractional subdiffusion equation, SIAM J. Sci. Comput., 35, A2976-A3000 (2013) · Zbl 1292.65096
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.