zbMATH — the first resource for mathematics

Trivial intersection of blocks and nilpotent subgroups. (English) Zbl 07209589
Summary: Let \(p, q\) be different primes and suppose that the principal \(p\)- and the principal \(q\)-block of a finite group have only one irreducible complex character in common, namely the trivial one. We conjecture that this condition implies the existence of a nilpotent Hall \(\{p, q \}\)-subgroup and prove that a minimal counter-example must be an almost simple group where pq divides the order of its simple nonabelian normal subgroup. As an immediate consequence we obtain that the conjecture holds true for \(p\)-solvable or \(q\)-solvable groups. Furthermore, we prove the conjecture in case \(2 \in \{p, q \}\) using the classification theorem of finite simple groups. Finally, we consider the situation that the intersection of an arbitrary \(p\)-block with an arbitrary \(q\)-block contains only one irreducible character.
Reviewer: Reviewer (Berlin)
20C20 Modular representations and characters
20C15 Ordinary representations and characters
20C33 Representations of finite groups of Lie type
20C30 Representations of finite symmetric groups
Full Text: DOI
[1] Adin, R. M.; Frumkin, A., Rim hook tableaux and Kostant’s η-function coefficients, Adv. Appl. Math., 33, 492-511 (2004) · Zbl 1056.05144
[2] Alperin, J., Isomorphic blocks, J. Algebra, 43, 694-698 (1976) · Zbl 0367.20006
[3] Aschbacher, M.; Kessar, R.; Oliver, B., Fusion Systems in Algebra and Topology (2011), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1255.20001
[4] Beltrán, A.; Felipe, M. J.; Malle, G.; Moretó, A.; Navarro, G.; Sanus, L.; Solomon, R.; Huu Tiep, Pham, Nilpotent and abelian Hall subgroups in finite groups, Trans. Am. Math. Soc., 368, 2497-2513 (2016) · Zbl 1341.20017
[5] Bender, H., On the normal p-structure of a finite group and related topics I, Hokkaido Math. J., 7, 271-288 (1978) · Zbl 0405.20015
[6] Bessenrodt, C.; Zhang, J., Block separations and inclusions, Adv. Math., 218, 485-495 (2008) · Zbl 1185.20009
[7] Brauer, R., Some applications of the theory of blocks of characters of finite groups, J. Algebra, 1, 152-167 (1964) · Zbl 0214.28101
[8] Brauer, R., Blocks of characters and structure of finite groups, Bull. Am. Math. Soc., 1, 21-62 (1979) · Zbl 0418.20006
[9] Brough, J.; Liu, Y.; Paolini, A., The block graph of a finite group
[10] Carter, R., Finite Groups of Lie Type - Conjugacy Classes and Complex Characters (1993), John Wiley
[11] Conway, J. H.; Curtis, R. T.; Norton, S. P.; Parker, P. A.; Wilson, R. A., ATLAS of Finite Groups (1985), Clarendon Press: Clarendon Press Oxford · Zbl 0568.20001
[12] Enguehard, M., Sur les l-blocs unipotents des groupes reductifs finis quand l est mauvais, J. Algebra, 230, 334-377 (2000) · Zbl 0964.20020
[13] Feit, W., The Representation Theory of Finite Groups (1982), North Holland: North Holland Amsterdam · Zbl 0493.20007
[14] Geck, M., Character values, Schur indices and character sheaves, Represent. Theory, 7, 19-55 (2003) · Zbl 1065.20019
[15] Geck, M.; Hiss, G.; Lübeck, F.; Malle, G.; Pfeifer, G., CHEVIE - a system for computing and processing generic character tables for finite groups of Lie type, Weyl groups and Hecke algebras, Appl. Algebra Eng. Commun. Comput., 7, 175-210 (1996) · Zbl 0847.20006
[16] Hiss, G., Principal blocks and the Steinberg character, Algebra Colloq., 17, 361-364 (2010) · Zbl 1194.20012
[17] Huppert, B., Endliche Gruppen (1967), Springer: Springer Berlin · Zbl 0217.07201
[18] Huppert, B.; Blackburn, N., Finite Groups II, III (1982), Springer: Springer Berlin · Zbl 0514.20002
[19] Isaacs, I. M., Character Theory of Finite Groups (1994), Academic Press: Academic Press New York · Zbl 0823.20005
[20] James, G.; Kerber, A., The Representation Theory of the Symmetric Group (1981), Addison-Wesley Publishing Co.: Addison-Wesley Publishing Co. Reading, Mass
[21] Liu, Y.; Zhang, J., Small intersections of principal blocks, J. Algebra, 472, 214-225 (2017) · Zbl 1401.20018
[22] Lusztig, G., Rationality properties of unipotent representations, J. Algebra, 258, 1-22 (2002) · Zbl 1141.20300
[23] Malle, G.; Navarro, G., Brauer’s height zero conjecture for two primes, Math. Z. (2020)
[24] Moretó, A., Sylow numbers and nilpotent Hall subgroups, J. Algebra, 379, 80-84 (2013) · Zbl 1285.20019
[25] Nagao, H.; Tsushima, Y., Representations of Finite Groups (1987), Academic Press: Academic Press Boston
[26] Olsson, J. B., Combinatorics and Representations of Finite Groups (1993), Universität Essen, Fachbereich Mathematik: Universität Essen, Fachbereich Mathematik Essen · Zbl 0796.05095
[27] Stanley, R. P., Enumerative Combinatorics, vol. 2 (1999), Cambridge University Press: Cambridge University Press New York/Cambridge · Zbl 0928.05001
[28] Wielandt, H., Zum Satz von Sylow, Math. Z., 60, 407-408 (1954) · Zbl 0056.25601
[29] Willems, W., On p-chief factors of finite groups, Commun. Algebra, 13, 2433-2447 (1985) · Zbl 0575.20012
[30] Willems, W., \( p^\ast \)-theory and modular representation theory, J. Algebra, 104, 135-140 (1986) · Zbl 0618.20007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.