×

zbMATH — the first resource for mathematics

On *-representations of the Hopf *-algebra associated with the quantum group \(U_ q(n)\). (English) Zbl 0721.17014
The paper under review is concerned with the quantum group \(U_ q(n)\), i.e. the “compact form” of \(\text{GL}_ q(n)\), from the viewpoint of the “algebra of continuous functions” on it. The author defines the algebra of rational functions on \(\text{GL}_ q(n)\), and calls \(\text{Pol}(U_ q(n))\) this algebra provided with a star operation analogous to the Cartan involution. He proves a sort of Poincaré-Birkhoff-Witt theorem for \(\text{Pol}(U_ q(n))\), whose proof indeed does not involve the star operation. This enables him to define a triangular decomposition on \(\text{Pol}(U_ q(n))\) (in fact, one triangular decomposition for each element \(\mu\) of the symmetric group \({\mathfrak S}_ n)\); in turn, this makes it possible to introduce Verma modules \(V^{\mu}(v)\), for any \(\mu\) in \({\mathfrak S}_ n\), \(v \in {\mathbb C}^ n\). Each \(V^{\mu}(v)\) has a unique irreducible quotient, denoted by \(L^{\mu}(v)\). One of the main results in the paper states that the list \[ L^{\mu}(v),\quad v=(v_ 1,\dots,v_ n),\quad | v_ i| =q^{I(\mu,i)},\quad \mu \in\mathfrak S_ n \] yields all the mutually inequivalent irreducible representations of \(\text{Pol}(U_ q(n))\). (Here \(I(\mu, i)\) is a well-defined integer.) (Similar results were obtained by Ya. S. Soibel’man [Dokl. Akad. Nauk SSSR 307, No. 1, 41–45 (1989; Zbl 0698.22015)], as remarked at the end of the article.)
Next, the author considers the \(C^*\)-completion of the \({}^*\)-algebra \(\text{Pol}(U_ q(n))\), denoted \({\mathfrak C}_ n(U_ q(n))\). (The classification stated above permits him to prove that the seminorm used in the completion is in fact a norm.) He proves that \({\mathfrak C}(U_ q(n))\) is a “compact matrix pseudogroup” in the sense of Woronowicz and a type I \(C^*\)-algebra. For related material see [M. Rosso, Astérisque, Séminaire Bourbaki, Vol. 1990/91, Exp. No. 744, Astérisque 201-203, 443–483 (1991; Zbl 0752.17016)] and references therein; the reader interested in the representation theory of compact matrix pseudogroups can consult S. Z. Levendorskii and Ya. S. Soibel’man [Algebras of functions on compact quantum groups, Schubert cells and quantum tori, Commun. Math. Phys. 139, No. 1, 141–170 (1991; Zbl 0729.17011)].

MSC:
17B37 Quantum groups (quantized enveloping algebras) and related deformations
16W30 Hopf algebras (associative rings and algebras) (MSC2000)
46L89 Other “noncommutative” mathematics based on \(C^*\)-algebra theory
46L85 Noncommutative topology
46L87 Noncommutative differential geometry
PDF BibTeX XML Cite
Full Text: Numdam EuDML
References:
[1] Bergman, G.M. , The diamond lemma for ring theory , Advances Math. 29, 1978, 178-218. · Zbl 0377.16013 · doi:10.1016/0001-8708(78)90010-5
[2] Bragiel, K. , The twisted SU(3) group. Irreducible *-representations of the C*-algebra C(S\mu U(C)) , Lett. Math. Phys. 17, 1989, 37-44. · Zbl 0706.46054 · doi:10.1007/BF00420012
[3] Dixmier, J. , Les C*-algèbres et leurs représentations , Gauthier-Villars, 1964. · Zbl 0152.32902
[4] Drinfeld, V.G. , Quantum groups, in ’Proc. International Congress of Mathematicians, 1986’ , American Math. Soc., 1987, 798-820. · Zbl 0667.16003
[5] Faddeev, L.D. , N. Yu, Reshetikhin and L.A. Takhtajan , Quantization of Lie groups and Lie algebras , in ’Algebraic Analysis’ , vol. 1 (eds. M. Kashiwara and T. Kawai), Academic Press, 1988, 129-139. · Zbl 0677.17010
[6] Humphreys, J.E. , Introduction to Lie algebras and representation theory, GTM 9 , Springer Verlag, 1972. · Zbl 0254.17004
[7] Jimbo, M. , A q-difference analogue of U(g) and the Yang-Baxter equation , Lett. Math. Phys. 10, 1985, 63-69. · Zbl 0587.17004 · doi:10.1007/BF00704588
[8] Knapp, A.W. , Representation theory of semisimple groups , Princeton University Press, 1986. · Zbl 0604.22001
[9] Koornwinder, T.H. , Orthogonal polynomials in connection with quantum groups , in ’Orthogonal Polynomials: Theory and Practice’ (ed. P. Nevai), NATO ASI Series C , Vol. 294, Kluwer, 1990, 257-292. · Zbl 0697.42019
[10] Mackey, G.W. , The theory of unitary group representations , The University of Chicago Press, 1976. · Zbl 0344.22002
[11] Manin, Yu. I. , Quantum groups and non-commutative geometry , Centre de Recherches Mathématiques, Université de Montreal, 1988. · Zbl 0724.17006
[12] Parshall, B. and J.-P. Wang , Quantum linear groups I , preprint, 1989.
[13] Reshetikhin, N. Yu. , L.A. Takhtajan and L.D. Faddeev , Quantification of Lie groups and Lie algebras , Algebra i Analiz 1, 1989, 178-206. (In Russian.) · Zbl 0715.17015
[14] Rosso, M. , An analogue of P. B. W. theorem and the universal R-matrix for Uhsl(N + 1) , Comm. Math. Phys. 124, 1989, 307-318. · Zbl 0694.17006 · doi:10.1007/BF01219200
[15] Rudin, W. , Functional analysis , Tata McGraw-Hill, 1974. · Zbl 0253.46001
[16] Sakai, S. , C*-algebras and W*-algebras , Springer Verlag, 1971. · Zbl 0219.46042
[17] Sweedler, M.E. , Hopf algebras , Benjamin, 1969. · Zbl 0194.32901
[18] Takesaki, M. , Theory of operator algebras I , Springer Verlag, 1979. · Zbl 0436.46043
[19] Vaksman, L.L. and Ya. S. Soibelman , Function algebra on the quantum group SU(2) , Funktsional Anal. i. Prilozhen 22 (3), 1988, 1-14,English translation in Functional Anal. Appl. 22(3), 1988, 170-181. · Zbl 0679.43006 · doi:10.1007/BF01077623
[20] Woronowicz, S.L. , Twisted SU(2) group. An example of a non-commutative differential calculus , Publ. Res. Inst. Math. Sci. 23, 1987, 117-181. · Zbl 0676.46050 · doi:10.2977/prims/1195176848
[21] Woronowicz, S.L. , Compact matrix pseudogroups , Comm. Math. Phys. 111, 1987, 613-665. · Zbl 0627.58034 · doi:10.1007/BF01219077
[22] Woronowicz, S.L. , Tanaka-Krein duality for compact matrix pseudogroups. Twisted SU(N) groups , Invent. Math. 93, 1988, 35-76. · Zbl 0664.58044 · doi:10.1007/BF01393687 · eudml:143589
[23] Yamane, H. , A Poincaré-Birkhoff-Witt theorem for the quantum group of type AN , Proc. Japan Acad. 64, Ser. A, 1988, 385-386. · Zbl 0677.17011 · doi:10.3792/pjaa.64.385 · euclid:pja/1195513062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.