zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On normal extensions of unbounded operators. III: Spectral properties. (English) Zbl 0721.47009
This is the last part of the authors’ triology devoted to systematic exposition of the fundamentals of the theory of unbounded subnormal operators [for part II see Acta Sci. Math. 53, No.12, 153-177 (1989; Zbl 0698.47003)]. The present part concerns spectral properties of subnormal oprators as related to those of their normal extensions. Though minimality of spectral type need not entail uniqueness (they give such an example), it is shown that the basic spectral inclusion property holds true. Suppose that an unbounded subnormal operator S leaves its domain invariant and it has at least one minimal normal extension of cyclic type. Then the authors show that an arbitrary normal extension of S is minimal of spectral type if and only if it is minimal of cyclic type. Moreover they give sufficient conditions for that S has a minimal normal extension of cyclic type. The paper contains researches of analytic models of cyclic unbounded subnormal operators.

47A20Dilations, extensions and compressions of linear operators
47B25Symmetric and selfadjoint operators (unbounded)
47B20Subnormal operators, hyponormal operators, etc.
Full Text: DOI
[1] Akhiezer, N. I., Glazman, I.M., Theory of linear operators in Hilbert space, vol. 1, Pitman, Boston-London-Melbourne, 1984. · Zbl 0098.30702
[2] Aronszajn, N., Theory of reproducing kernels, Trans. Amer. Math. Soc., 68 (1950), 337-404. · Zbl 0037.20701 · doi:10.2307/1990404
[3] Abrahamse, M. B., Douglas, R. G., A class of subnormal operators related to multiply- connected domains, Adv. Math., 19 (1976), 106-148. · Zbl 0321.47019 · doi:10.1016/0001-8708(76)90023-2
[4] Bargmann, V., On a Hilbert space of analytic functions and associated integral transform, Comm. Pure Appl. Math., 19(1961), 187-214. · Zbl 0107.09102 · doi:10.1002/cpa.3160140303
[5] Berberian, S. K., Measure and integration, Macmillan, New York, 1965. · Zbl 0126.08001
[6] Bram, J., Subnormal operators, Duke Math. /., 22 (1955), 75-94. · Zbl 0064.11603 · doi:10.1215/S0012-7094-55-02207-9
[7] Coddington, E. A., Formally normal operators having no normal extension, Can. J. Math., 17 (1965), 1030-1040 · Zbl 0134.31803 · doi:10.4153/CJM-1965-098-8
[8] Conway, J.B., Subnormal operators, Pitman, London, 1981.
[9] Frankfurt, R., Subnormal weighted shifts and related function spaces, /. Math. Anal. Appl., 52 (1975), 471-489. · Zbl 0319.47024 · doi:10.1016/0022-247X(75)90074-8
[10] , Function spaces associated with radially symmetric measures, /. Math. Anal Appl., 60(1977), 502-541. · Zbl 0363.46029 · doi:10.1016/0022-247X(77)90039-7
[11] Fuglede, B., The multidimensional moment problem, Expo. Math., 1 (1983), 47-65. · Zbl 0514.44006
[12] Halmos, P., Spectra and spectral manifolds, Ann. Soc. Polon. Math., 25(1952), 43-49. · Zbl 0049.09001
[13] McDonald, G., Sundberg, C., On the spectra 01 unbounded subnormal operators, Can. J. Math., 38 (1986), 1135-1148. · Zbl 0647.47036 · doi:10.4153/CJM-1986-057-x
[14] O’in, R. F., Functional relationships between a subnormal operator and its minimal normal extension, Pac. J. Math., 63 (1976), 221-229. · Zbl 0323.47018 · doi:10.2140/pjm.1976.63.221
[15] Ota, S., Schmiidgen, K., On some classes of unbounded operaiors, Integral Equations Operator Theory, 12(1989), 211-226.
[16] Shields, A.L., Weighted shifts and analytic function theory, Mathematical Surveys, vol. 13, pp. 49-128, American Mathematical Society, Providence, RI, 1974. · Zbl 0303.47021
[17] Stochel, J., Szafraniec, F. H., On normal extensions of unbounded operators. I, /. Operator Theory, 14(1985), 31-55. · Zbl 0613.47022
[18] 1 On normal extensions of unbounded operators. II, to appear in Act a Sci. Math. (Szeged), 53 (1989) ; circulating since November 1985 as Preprint No. 349 of the Institute of Mathematics, Polish Academy of Sciences.
[19] , A few assorted questions about unbounded subnormal operators, to appear in Univ. lagel. Acta Math. · Zbl 0748.47015
[20] Trent, T.T., //2(^0 spaces and bounded point evaluation, Pac. J. Math., SO (1979), 279-292.
[21] , Extension of a theorem of Szego, Michigan Math. /., 26 (1979), 373-377.