Bouchitte, G. Représentation intégrale de fonctionnelles convexes sur un espace de mesures. II: Cas de l’épi-convergence. (Integral representation of convex functionals on a measure space. II: The case of epiconvergence). (French) Zbl 0721.49041 Ann. Univ. Ferrara, Nuova Ser., Sez. VII 33, 113-156 (1987). [For part I see the author, AVAMAC 86-11, Univ. de Perpignan (1986; Zbl 0721.49040).] We state a general theorem of convergence for integral functionals on a space of measures. This is done thanks to a representation result for convex functionals F: \({\mathcal M}^ b\to [0,+\infty]\) which are lower semicontinuous with respect to the weak topology \(\sigma\) (\({\mathcal M}^ b,b_ 0)\) and satisfy the additivity condition \(F(\lambda_ 1+\lambda_ 2)=F(\lambda_ 1)+F(\lambda_ 2)\) whenever \(\lambda_ 1\perp \lambda_ 2\). Some duality arguments are developed in order to compute the limits and examples are detailed in relation with mechanics (reinforcement problems, fissured elastic bodies...). Reviewer: G.Bouchitte Cited in 1 ReviewCited in 7 Documents MSC: 49Q20 Variational problems in a geometric measure-theoretic setting 46E27 Spaces of measures 74B20 Nonlinear elasticity 28A33 Spaces of measures, convergence of measures Keywords:convergence for integral functionals Citations:Zbl 0721.49040 PDF BibTeX XML Cite \textit{G. Bouchitte}, Ann. Univ. Ferrara, Nuova Ser., Sez. VII 33, 113--156 (1987; Zbl 0721.49041) OpenURL