×

zbMATH — the first resource for mathematics

A novel formulation for the explicit discretisation of evolving boundaries with application to topology optimisation. (English) Zbl 1442.74223
Summary: Evolving boundaries are an intrinsic part of many physical processes and numerical methods. Most efforts to model evolving boundaries rely on implicit schemes, such as the level-set method (LSM). LSM provides the means to efficiently model the evolution of a boundary, but lacks the ability to transmit information or provide information directly at the boundary. Explicit alternatives based on remeshing or partial-remeshing are often computationally expensive and inherently complex to implement. This work proposes a solution to this dichotomy: a novel finite element method (FEM) based formulation capable of explicitly discretising moving boundaries in an accurate and numerically-efficient way. It couples the floating node method (FNM) with LSM for the first time, which yield a methodology suitable for implementation as user-element in a generic FEM package. The explicitly discretised boundary allows for a new velocity-extension methodology, and a new LSM-reinitialisation procedure, which show benefits in accuracy and efficiency. The potential of this formulation is showcased within topology optimisation, showing greater geometrical accuracy and improvements in the optimum solution attained when compared to implicit methods.
MSC:
74S05 Finite element methods applied to problems in solid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
74P15 Topological methods for optimization problems in solid mechanics
Software:
Matlab; PolyTop; top.m; XFEM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Zhang, Z.-Q.; Liu, G. R.; Khoo, B. C., A three dimensional immersed smoothed finite element method (3D IS-FEM) for fluid-structure interaction problems, Comput. Mech., 51, 2, 129-150 (2013) · Zbl 1312.74049
[2] Tornberg, A.-K.; Engquist, B., A finite element based level-set method for multiphase flow applications, Comput. Vis. Sci., 3, 1-2, 93-101 (2000) · Zbl 1060.76578
[3] Comminal, R.; Serdeczny, M. P.; Pedersen, D. B.; Spangenberg, J., Numerical modeling of the strand deposition flow in extrusion-based additive manufacturing, Addit. Manuf., 20, 68-76 (2018)
[4] Bikas, H.; Stavropoulos, P.; Chryssolouris, G., Additive manufacturing methods and modelling approaches: a critical review, Int. J. Adv. Manuf. Technol., 83, 1-4, 389-405 (2016)
[5] Chessa, J.; Smolinski, P.; Belytschko, T., The extended finite element method (XFEM) for solidification problems, Internat. J. Numer. Methods Engrg., 53, 8, 1959-1977 (2002) · Zbl 1003.80004
[6] Chen, B.; Pinho, S.; De Carvalho, N.; Baiz, P.; Tay, T., A floating node method for the modelling of discontinuities in composites, Eng. Fract. Mech., 127, 104-134 (2014)
[7] De Carvalho, N.; Chen, B.; Pinho, S.; Ratcliffe, J.; Baiz, P.; Tay, T., Modeling delamination migration in cross-ply tape laminates, Composites A, 71, 192-203 (2015)
[8] Allaire, G.; Jouve, F.; Toader, A. M., Structural optimization using sensitivity analysis and a level-set method, J. Comput. Phys., 194, 1, 363-393 (2004) · Zbl 1136.74368
[9] Luo, J.; Luo, Z.; Chen, L.; Tong, L.; Wang, M. Y., A semi-implicit level set method for structural shape and topology optimization, J. Comput. Phys., 227, 11, 5561-5581 (2008) · Zbl 1147.65046
[10] Allaire, G.; Dapogny, C.; Frey, P., Shape optimization with a level set based mesh evolution method, Comput. Methods Appl. Mech. Engrg., 282, 22-53 (2014) · Zbl 1423.74739
[11] Christiansen, A. N.; Nobel-Jørgensen, M.; Aage, N.; Sigmund, O.; Bærentzen, J. A., Topology optimization using an explicit interface representation, Struct. Multidiscip. Optim., 49, 3, 387-399 (2014)
[12] Stanford, J.; Fries, T., A higher-order conformal decomposition finite element method for plane b-rep geometries, Comput. Struct., 214, 15-27 (2019)
[13] Borden, M. J.; Verhoosel, C. V.; Scott, M. A.; Hughes, T. J.; Landis, C. M., A phase-field description of dynamic brittle fracture, Comput. Methods Appl. Mech. Engrg., 217-220, 77-95 (2012) · Zbl 1253.74089
[14] Riehl, S.; Steinmann, P., On structural shape optimization using an embedding domain discretization technique, Internat. J. Numer. Methods Engrg., 109, 9, 1315-1343 (2017)
[15] Wang, M. Y.; Wang, X., “Color” level sets: a multi-phase method for structural topology optimization with multiple materials, Comput. Methods Appl. Mech. Engrg., 193, 6-8, 469-496 (2004) · Zbl 1060.74585
[16] Picelli, R.; Townsend, S.; Brampton, C.; Norato, J.; Kim, H., Stress-based shape and topology optimization with the level set method, Comput. Methods Appl. Mech. Engrg., 329, 1-23 (2018) · Zbl 1439.74294
[17] Burman, E.; Elfverson, D.; Hansbo, P.; Larson, M. G.; Larsson, K., Shape optimization using the cut finite element method, Comput. Methods Appl. Mech. Engrg., 328, 242-261 (2018) · Zbl 1439.74316
[18] Xia, Q.; Wang, M. Y.; Shi, T., A level set method for shape and topology optimization of both structure and support of continuum structures, Comput. Methods Appl. Mech. Engrg., 272, 340-353 (2014) · Zbl 1296.74084
[19] Challis, V. J., A discrete level-set topology optimization code written in Matlab, Struct. Multidiscip. Optim., 41, 3, 453-464 (2010) · Zbl 1274.74322
[20] Yulin, M.; Xiaoming, W., A level set method for structural topology optimization and its applications, Adv. Eng. Softw., 35, 7, 415-441 (2004) · Zbl 1067.90153
[21] Wang, M. Y.; Wang, X.; Guo, D., A level set method for structural topology optimization, Comput. Methods Appl. Mech. Engrg., 192, 1-2, 227-246 (2003) · Zbl 1083.74573
[22] van Dijk, N. P.; Maute, K.; Langelaar, M.; van Keulen, F., Level-set methods for structural topology optimization: a review, Struct. Multidiscip. Optim., 48, 3, 437-472 (2013)
[23] Xing, X.; Wei, P.; Wang, M. Y., A finite element-based level set method for structural optimization, Internat. J. Numer. Methods Engrg., 82, 7, 805-842 (2009) · Zbl 1188.74092
[24] Valance, S.; de Borst, R.; Réthoré, J.; Coret, M., A partition-of-unity-based finite element method for level sets, Internat. J. Numer. Methods Engrg., 76, 10, 1513-1527 (2008) · Zbl 1195.65134
[25] Xia, Q.; Shi, T., Optimization of structures with thin-layer functional device on its surface through a level set based multiple-type boundary method, Comput. Methods Appl. Mech. Engrg., 311, 56-70 (2016) · Zbl 1439.74305
[26] Ha, S. H.; Cho, S., Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh, Comput. Struct., 86, 13-14, 1447-1455 (2008)
[27] Nguyen, S. H.; Kim, H.-G., Level set based shape optimization using trimmed hexahedral meshes, Comput. Methods Appl. Mech. Engrg., 345, 555-583 (2019) · Zbl 1440.74336
[28] Hahn, Y.; Cofer, J. I., Study of parametric and non-parametric optimization of a rotor-bearing system, (Volume 7A: Structures and Dynamics (2014), American Society of Mechanical Engineers)
[29] Yamasaki, S.; Nomura, T.; Kawamoto, A.; Sato, K.; Nishiwaki, S., A level set-based topology optimization method targeting metallic waveguide design problems, Internat. J. Numer. Methods Engrg., 87, 9, 844-868 (2011) · Zbl 1242.78042
[30] Sigmund, O., A 99 line topology optimization code written in Matlab, Struct. Multidiscip. Optim., 21, 2, 120-127 (2001)
[31] Sigmund, O.; Maute, K., Topology optimization approaches, Struct. Multidiscip. Optim., 48, 6, 1031-1055 (2013)
[32] Allaire, G.; Jouve, F.; Toader, A.-M., A level-set method for shape optimization, C. R. Math., 334, 12, 1125-1130 (2002) · Zbl 1115.49306
[33] Chen, B.; Tay, T.; Pinho, S.; Tan, V., Modelling the tensile failure of composites with the floating node method, Comput. Methods Appl. Mech. Engrg., 308, 414-442 (2016) · Zbl 1439.74092
[34] Chen, B.; Tay, T.; Pinho, S.; Tan, V., Modelling delamination migration in angle-ply laminates, Compos. Sci. Technol., 142, 145-155 (2017)
[35] Kocaman, E.; Chen, B.; Pinho, S., A polymorphic element formulation towards multiscale modelling of composite structures, Comput. Methods Appl. Mech. Engrg., 346, 359-387 (2019) · Zbl 1440.74411
[36] Fries, T.-P.; Belytschko, T., The extended/generalized finite element method: An overview of the method and its applications, Internat. J. Numer. Methods Engrg., 84, 3, 253-304 (2010) · Zbl 1202.74169
[37] Song, J.-H.; Areias, P. M.A.; Belytschko, T., A method for dynamic crack and shear band propagation with phantom nodes, Internat. J. Numer. Methods Engrg., 67, 6, 868-893 (2006) · Zbl 1113.74078
[38] Nguyen-Xuan, H., A polytree-based adaptive polygonal finite element method for topology optimization, Internat. J. Numer. Methods Engrg., 110, 10, 972-1000 (2017)
[39] Xia, Q.; Shi, T.; Liu, S.; Wang, M. Y., A level set solution to the stress-based structural shape and topology optimization, Comput. Struct., 90-91, 1, 55-64 (2012)
[40] Talischi, C.; Paulino, G. H.; Pereira, A.; Menezes, I. F., PolyTop: A Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes, Struct. Multidiscip. Optim., 45, 3, 329-357 (2012) · Zbl 1274.74402
[41] Cai, S.; Zhang, W., Stress constrained topology optimization with free-form design domains, Comput. Methods Appl. Mech. Engrg., 289, 267-290 (2015) · Zbl 1423.74740
[42] Shapiro, V., Theory of R-functions and Applications: A PrimerComputer Science Technical Reports (1991), Cornell University
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.