×

Arbitrarily high-order energy-preserving methods for simulating the gyrocenter dynamics of charged particles. (English) Zbl 1477.65265

Authors’ abstract: Gyrocenter dynamics of charged particles plays a fundamental role in plasma physics. In particular, accuracy and conservation of energy are important features for correctly performing long-time simulations. For this purpose, we here propose arbitrarily high-order energy conserving methods for its simulation. The analysis and the efficient implementation of the methods are fully described, and some numerical tests are reported.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
65L05 Numerical methods for initial value problems involving ordinary differential equations

Software:

BiM; Mulprec; BiMD; LIMbook
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Littlejohn, R. G., Variational principles of guiding centre motion, J. Plasma Phys., 29, 111-125 (1983)
[2] Cohen, D.; Hairer, E., Linear energy-preserving integrators for Poisson systems, BIT, 51, 91-101 (2011) · Zbl 1216.65175
[3] Brugnano, L.; Calvo, M.; Montijano, J. I.; Rández, L., Energy preserving methods for Poisson systems, J. Comput. Appl. Math., 236, 3890-3904 (2012) · Zbl 1247.65092
[4] Zhang, R.; Liu, J.; Qin, H.; Tang, Y., Energy-preserving algorithm for gyrocenter dynamics of charged particles, Numer. Algorithms, 81, 1521-1530 (2019) · Zbl 1436.65209
[5] Iavernaro, F.; Pace, B., S-stage trapezoidal methods for the conservation of Hamiltonian functions of polynomial type, AIP Conf. Proc., 936, 603-606 (2007) · Zbl 1152.65345
[6] Iavernaro, F.; Pace, B., Conservative block-boundary value methods for the solution of polynomial Hamiltonian systems, AIP Conf. Proc., 1048, 888-891 (2008) · Zbl 1167.65461
[7] Iavernaro, F.; Trigiante, D., High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems, JNAIAM J. Numer. Anal. Ind. Appl. Math., 4, 1-2, 87-101 (2009) · Zbl 1191.65169
[8] Brugnano, L.; Iavernaro, F.; Susca, T., Hamiltonian BVMs (HBVMs): implementation details and applications, AIP Conf. Proc., 1168, 723-726 (2009) · Zbl 1182.65187
[9] Brugnano, L.; Iavernaro, F.; Trigiante, D., Hamiltonian BVMs (HBVMs): A family of drift-free methods for integrating polynomial Hamiltonian systems, AIP Conf. Proc., 1168, 715-718 (2009) · Zbl 1182.65188
[10] Brugnano, L.; Iavernaro, F.; Trigiante, D., Hamiltonian boundary value methods (Energy preserving discrete line integral methods), JNAIAM J. Numer. Anal. Ind. Appl. Math., 5, 1-2, 17-37 (2010) · Zbl 1432.65182
[11] Brugnano, L.; Iavernaro, F.; Trigiante, D., A simple framework for the derivation and analysis of effective one-step methods for ODEs, Appl. Math. Comput., 218, 8475-8485 (2012) · Zbl 1245.65086
[12] Brugnano, L.; Iavernaro, F., Line Integral Methods for Conservative Problems (2016), Chapman and Hall/CRC: Chapman and Hall/CRC Boca Raton, FL · Zbl 1335.65097
[13] Brugnano, L.; Iavernaro, F., Line integral solution of differential problems, Axioms, 7, 2, 36 (2018) · Zbl 1432.65181
[14] Brugnano, L.; Frasca-Caccia, G.; Iavernaro, F., Line integral solution of Hamiltonian PDEs, Mathematics, 7, 3, 275 (2019)
[15] Brugnano, L.; Montijano, J. I.; Rández, L., On the effectiveness of spectral methods for the numerical solution of multi-frequency highly-oscillatory Hamiltonian problems, Numer. Algorithms, 81, 1, 345-376 (2019) · Zbl 1434.65311
[16] Brugnano, L.; Iavernaro, F.; Montijano, J. I.; Rández, L., Spectrally accurate space-time solution of Hamiltonian PDEs, Numer. Algorithms, 81, 4, 1183-1202 (2019) · Zbl 1480.65366
[17] Amodio, P.; Brugnano, L.; Iavernaro, F., A note on the continuous-stage Runge-Kutta(-Nyström) formulation of Hamiltonian Boundary Value Methods (HBVMs), Appl. Math. Comput., 363, Article 124634 pp. (2019) · Zbl 1433.65123
[18] Amodio, P.; Brugnano, L.; Iavernaro, F., Spectrally accurate solutions of nonlinear fractional initial value problems, AIP Conf. Proc., 2116, Article 140005 pp. (2019)
[19] Brugnano, L.; Montijano, J. I.; Rández, L., High-order energy-conserving line integral methods for charged particle dynamics, J. Comput. Phys., 396, 209-227 (2019) · Zbl 1452.65392
[20] Dahlquist, G.; Björk, Å., Numerical Methods in Scientific Computing. Volume I (2008), SIAM: SIAM Philadelphia, PA, USA · Zbl 1153.65001
[21] Brugnano, L.; Iavernaro, F.; Trigiante, D., A note on the efficient implementation of Hamiltonian BVMs, J. Comput. Appl. Math., 236, 375-383 (2011) · Zbl 1228.65107
[22] Brugnano, L., Blended block BVMs \((B{}_3\) VMs): a family of economical implicit methods for ODEs, J. Comput. Appl. Math., 116, 41-62 (2000) · Zbl 0982.65084
[23] Brugnano, L.; Magherini, C., Blended implementation of block implicit methods for ODEs, Appl. Numer. Math., 42, 29-45 (2002) · Zbl 1006.65078
[24] Brugnano, L.; Magherini, C., Recent advances in linear analysis of convergence for splittings for solving ODE problems, Appl. Numer. Math., 59, 542-557 (2009) · Zbl 1162.65039
[25] Brugnano, L.; Magherini, C., The BiM code for the numerical solution of ODEs, J. Comput. Appl. Math., 164-165, 145-158 (2004) · Zbl 1038.65063
[26] Brugnano, L.; Magherini, C.; Mugnai, F., Blended implicit methods for the numerical solution of DAE problems, J. Comput. Appl. Math., 189, 34-50 (2006) · Zbl 1088.65076
[27] Brugnano, L.; Frasca-Caccia, G.; Iavernaro, F., Efficient implementation of Gauss collocation and Hamiltonian Boundary Value Methods, Numer. Algorithms, 65, 633-650 (2014) · Zbl 1291.65357
[28] Zhang, R.; Liu, J.; Tang, Y.; Qin, H.; Xiao, J.; Zhu, B., Canonicalization and symplectic simulation of the gyrocenter dynamics in time- independent magnetic fields, Phys. Plasmas, 21, Article 032504 pp. (2014)
[29] Zhu, B.; Hu, Z.; Tang, Y.; Zhang, R., Symmetric and Symplectic Methods for Gyrocenter Dynamics in Time-Independent Magnetic FieldsReport No. ICMSEC-15-3 (2015), Institute of Computational Mathematics and Scientific/Engineering Computing Chinese Academy of Sciences
[30] Amodio, P.; Brugnano, L.; Iavernaro, F., Analysis of Spectral Hamiltonian Boundary Value Methods (SHBVMs) for the numerical solution of ODE problems, Numer. Algorithms, 1-20 (2019)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.