×

zbMATH — the first resource for mathematics

Boundary behavior of the Carathéodory and Kobayashi-Eisenman volume elements. (English) Zbl 1442.32019
Summary: We study the boundary asymptotics of the Carathéodory and Kobayashi-Eisenman volume elements on smoothly bounded convex finite type domains and Levi corank one domains.

MSC:
32F45 Invariant metrics and pseudodistances in several complex variables
32T25 Finite-type domains
32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
PDF BibTeX XML Cite
Full Text: DOI Euclid
References:
[1] T. J. Barth, Convex domains and Kobayashi hyperbolicity, Proc. Amer. Math. Soc. 79 (1980), no. 4, 556-558. · Zbl 0438.32013
[2] E. Bedford and S. Pinchuk, Domains in \(\mathbf{C}^{n+1}\) with noncompact automorphism group, J. Geom. Anal. 1 (1991), no. 3, 165-191. · Zbl 0733.32014
[3] F. Berteloot and G. Cœuré, Domaines de \(\mathbf{C}^2 \), pseudoconvexes et de type fini ayant un groupe non compact d’automorphismes, Ann. Inst. Fourier (Grenoble) 41 (1991), no. 1, 77-86. · Zbl 0711.32016
[4] W. S. Cheung and B. Wong, An integral inequality of an intrinsic measure on bounded domains in \(\mathbf{C}^n \), Rocky Mountain J. Math. 22 (1992), no. 3, 825-836. · Zbl 0776.32014
[5] S. Cho, Boundary behavior of the Bergman kernel function on some pseudoconvex domains in \(\mathbf{C}^n \), Trans. Amer. Math. Soc. 345 (1994), no. 2, 803-817. · Zbl 0813.32023
[6] I. M. Dektyarev, Criterion for the equivalence of hyperbolic manifolds, Funktsional. Anal. i Prilozhen. 15 (1981), no. 4, 73-74 (Russian).
[7] H. Gaussier, Characterization of convex domains with noncompact automorphism group, Michigan Math. J. 44 (1997), no. 2, 375-388. · Zbl 0889.32032
[8] H. Gaussier, Tautness and complete hyperbolicity of domains in \(\mathbf{C}^n \), Proc. Amer. Math. Soc. 127 (1999), no. 1, 105-116. · Zbl 0912.32025
[9] I. Graham and H. Wu, Characterizations of the unit ball \(B^n\) in complex Euclidean space, Math. Z. 189 (1985), no. 4, 449-456. · Zbl 0547.32013
[10] R. E. Greene and S. G. Krantz, “Characterizations of certain weakly pseudoconvex domains with noncompact automorphism groups” in Complex Analysis, Lect. Notes Math. 1268, Springer, Berlin, 1987, 121-157.
[11] R. E. Greene and S. G. Krantz, “Biholomorphic self-maps of domains” in Complex Analysis II, Lect. Notes Math. 1276, Springer, Berlin, 1987, 136-207.
[12] S. G. Krantz, The Kobayashi metric, extremal discs, and biholomorphic mappings, Complex Var. Elliptic Equ. 57 (2012), no. 1, 1-14. · Zbl 1246.32012
[13] D. Ma, Boundary behavior of invariant metrics and volume forms on strongly pseudoconvex domains, Duke Math. J. 63 (1991), no. 3, 673-697. · Zbl 0741.32017
[14] P. Mahajan and K. Verma, A comparison of two biholomorphic invariants, Internat. J. Math. 30 (2019), no. 1, 1950012, 16 pp. · Zbl 1417.32015
[15] J. D. McNeal, Estimates on the Bergman kernels of convex domains, Adv. Math. 109 (1994), no. 1, 108-139. · Zbl 0816.32018
[16] N. Nikolov, Behavior of the squeezing function near h-extendible boundary points, Proc. Amer. Math. Soc. 146 (2018), no. 8, 3455-3457. · Zbl 1398.32013
[17] N. Nikolov and P. J. Thomas, Comparison of the Bergman kernel and the Carathéodory-Eisenman volume, Proc. Amer. Math. Soc. 147 (2019), no. 11, 4915-4919. · Zbl 1435.32012
[18] N. Nikolov and K. Verma, On the squeezing function and Fridman invariants, to appear in J. Geom. Anal. · Zbl 1436.32048
[19] J.-P. Rosay, Sur une caractérisation de la boule parmi les domaines de \(\mathbf{C}^n\) par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble) 29 (1979), no. 4, ix, 91-97. · Zbl 0402.32001
[20] D. D. Thai and N. V. Thu, Characterization of domains in \(\mathbb{C}^n\) by their noncompact automorphism groups, Nagoya Math. J. 196 (2009), 135-160. · Zbl 1187.32016
[21] B. Wong, Characterization of the unit ball in \(\mathbf{C}^n\) by its automorphism group, Invent. Math. 41 (1977), no. 3, 253-257. · Zbl 0385.32016
[22] J. Y. Yu, Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains, Trans. Amer. Math. Soc. 347 (1995), no. 2, 587-614. · Zbl 0814.32006
[23] A. M. Zimmer, Gromov hyperbolicity and the Kobayashi metric on convex domains of finite type, Math. Ann. 365 (2016), nos. 3-4, 1425-1498. · Zbl 1379.53053
[24] A. Zimmer, A gap theorem for the complex geometry of convex domains, Trans. Amer. Math. Soc. 370 (2018), no. 10, 7489-7509. · Zbl 1405.32053
[25] A. Zimmer, Characterizing strong pseudoconvexity, obstructions to biholomorphisms, and Lyapunov exponents, Math. Ann. 374 (2019), nos. 3-4, 1811-1844. · Zbl 1435.32013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.