zbMATH — the first resource for mathematics

The radical of an \(n\)-absorbing ideal. (English) Zbl 1440.13009
Summary: In this note, we show that in a commutative ring \(R\) with unity, for any \(n > 0\), if \(I\) is an \(n\)-absorbing ideal of \(R\), then \((\sqrt{I})^n \subseteq I\).

13A15 Ideals and multiplicative ideal theory in commutative rings
Full Text: DOI Euclid
[1] D. F. Anderson and A. Badawi, “On \(n\)-absorbing ideals of commutative rings”, Comm. Algebra 39:5 (2011), 1646-1672. · Zbl 1232.13001
[2] A. Badawi, “On 2-absorbing ideals of commutative rings”, Bull. Austral. Math. Soc. 75:3 (2007), 417-429. · Zbl 1120.13004
[3] A. Badawi, “\(n\)-absorbing ideals of commutative rings and recent progress on three conjectures: a survey”, pp. 33-52 in Rings, polynomials, and modules, edited by M. Fontana et al., Springer, 2017. · Zbl 1390.13005
[4] W. D. Brownawell, “A pure power product version of the Hilbert Nullstellensatz”, Michigan Math. J. 45:3 (1998), 581-597. · Zbl 0964.14002
[5] J. N. Chaudhari, “A remark on \(n\)-absorbing ideals of principal ideal domains”, J. Indian Math. Soc. \((\) N.S.\() 81\):3-4 (2014), 227-229. · Zbl 1329.13004
[6] L. Ein and R. Lazarsfeld, “A geometric effective Nullstellensatz”, Invent. Math. 137:2 (1999), 427-448. · Zbl 0944.14003
[7] D. Eisenbud, Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer, 1995. · Zbl 0819.13001
[8] Z. Jelonek, “On the effective Nullstellensatz”, Invent. Math. 162:1 (2005), 1-17. · Zbl 1087.14003
[9] H. F. Moghimi and S. R. Naghani, “On \(n\)-absorbing ideals and the \(n\)-Krull dimension of a commutative ring”, J. Korean Math. Soc. 53:6 (2016), 1225-1236. · Zbl 1355.13005
[10] P. · Zbl 1374.13007
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.