×

zbMATH — the first resource for mathematics

Acronyms: identification, expansion and disambiguation. (English) Zbl 1444.68265
Summary: Acronyms – words formed from the initial letters of a phrase – are important for various natural language processing applications, including information retrieval and machine translation. While hand-crafted acronym dictionaries exist, they are limited and require frequent updates. We present a new machine-learning-based approach to automatically build an acronym dictionary from unannotated texts. This is the first such technique that specifically handles non-local acronyms, i.e., that can determine an acronym’s expansion even when the expansion does not appear in the same document as the acronym. Our approach automatically enhances the dictionary with contextual information to help address the acronym disambiguation task (selecting the most appropriate expansion for a given acronym in context), outperforming dictionaries built using prior techniques. We apply the approach to Modern Hebrew, a language with a long tradition of using acronyms, in which the productive morphology and unique orthography adds to the complexity of the problem.
MSC:
68T50 Natural language processing
91F20 Linguistics
Software:
C4.5; LIBSVM; MALLET; WEKA
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ashkenazi, S., Yarden, D.: Treasury of acronyms. Kiryat Sefer, Jerusalem. In Hebrew (1994)
[2] Blei, DM, Probabilistic topic models, Commun. ACM, 55, 4, 77-84 (2012)
[3] Blei, DM; Ng, AY; Jordan, MI, Latent dirichlet allocation, J. Mach. Learn. Res., 3, 993-1022 (2003) · Zbl 1112.68379
[4] Chang, CC; Lin, CJ, LIBSVM: A library for support vector machines, ACM Trans. Intell. Syst. Technol, 2, 27:1-27:27 (2011)
[5] Dannélls, D., Acronym recognition: recognizing acronyms in Swedish texts (2006), Gothenburg: Master’s Thesis, Department of Linguistics, University of Gothenburg, Gothenburg
[6] Dannélls, D.: Automatic acronym recognition. In: Proceedings of the 11th conference of the european chapter of the association for computational linguistics. Trento, Italy, pp. 167-170 (2006)
[7] Dannélls, D.: Acronym classification using feature combinations (2007)
[8] HaCohen-Kerner, Y., Kass, A., Peretz, A.: Baseline methods for automatic disambiguation of abbreviations in Jewish law documents. In: Vicedo, J.L., Martínez-Barco, P., Munoz, R., Noeda, M.S. (eds.) Proceedings of the 4th international conference on advances in natural language, lecture notes in artificial intelligence, vol. 3230, pp. 58-69. Springer, Berlin (2004)
[9] HaCohen-Kerner, Y., Kass, A., Peretz, A.: Abbreviation disambiguation: experiments with various variants of the one sense per discourse hypothesis. In: Kapetanios, E., Sugumaran, V., Spiliopoulou, M. (eds.) Lecture Notes in Computer Science, Natural Language and Information Systems, vol. 5039. Springer, pp. 27-39. 10.1007/978-3-540-69858-6_5 (2008)
[10] HaCohen-Kerner, Y., Kass, A., Peretz, A.: Combined one sense disambiguation of abbreviations. In: Proceedings of the 46th annual meeting of the association for computational linguistics on human language technologies: short papers, HLT-Short ’08. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 61-64. http://dl.acm.org/citation.cfm?id=1557690.1557707 (2008)
[11] HaCohen-Kerner, Y.; Kass, A.; Peretz, A., HAADS: a hebrew aramaic abbreviation disambiguation system, J. Am. Soc. Inf. Sci. Technol., 61, 9, 1923-1932 (2010)
[12] HaCohen-Kerner, Y.; Kass, A.; Peretz, A., Initialism disambiguation: man versus machine, J. Am. Soc. Inf. Sci. Technol., 64, 10, 2133-2148 (2013)
[13] Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, IH, The WEKA data mining software: an update, SIGKDD Explorations, 11, 1, 10-18 (2009)
[14] Israel Defense Forces: Dictionary of abbreviations and acronyms. In Hebrew (2010)
[15] Itai, A.; Wintner, S., Language resources for Hebrew, Lang. Resour. Eval., 42, 1, 75-98 (2008)
[16] Jain, A., Cucerzan, S., Azzam, S.: Acronym-Expansion Recognition and Ranking on the Web. In: Information reuse and integration (IRI 2007). IEEE, pp. 209-214 (2007)
[17] Ji, X., Xu, G., Bailey, J., Li, H.: Mining, ranking, and using acronym patterns. In: Proceedings of the 10th asia-pacific web conference on progress in WWW research and development, APWeb’08, pp. 371-382. Springer, Berlin (2008). http://dl.acm.org/citation.cfm?id=1791734.1791779
[18] Li, C., Ji, L., Yan, J.: Acronym disambiguation using word embedding. In: Proceedings of the 29th AAAI conference on artificial intelligence, pp. 4178-4179. https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9404 (2015)
[19] Mair, C., Twentieth-century english: history variation and standardization. Studies in english language (2009), Cambridge: Cambridge University Press, Cambridge
[20] Marwick, L., Biblical and judaic acronyms (1979), Brooklyn: KTAV Publishing House, Brooklyn
[21] McCallum, A.: MALLET: a machine learning for language toolkit. http://mallet.cs.umass.edu (2002)
[22] Muchnik, M., Morpho-phonemic characteristics of acronyms in contemporary Hebrew, Hebrew Linguistics, 54, 53-66 (2004)
[23] Nadeau, D., Turney, P.D.: A supervised learning approach to acronym identification. In: Proceedings of the 18th Canadian society conference on advances in artificial intelligence, AI’05, pp. 319-329. Springer, Berlin (2005). 10.1007/11424918_34 · Zbl 1121.68386
[24] Okazaki, N.; Ananiadou, S.; Tsujii, J., Building a high-quality sense inventory for improved abbreviation disambiguation, Bioinformatics, 26, 9, 1246-1253 (2010)
[25] Park, Y., Byrd, R.J.: Hybrid text mining for finding abbreviations and their definitions. In: Proceedings of the 2001 conference on empirical methods in natural language processing, pp. 126-133 (2001)
[26] Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C.J.C., Smola, A.J. (eds.) Advances in Kernel methods - support vector learning. MIT Press. http://research.microsoft.com/∼jplatt/smo.html (1998)
[27] Quinlan, JR, C4.5: programs for machine learning (1993), San Mateo: Morgan Kaufmann Publishers, San Mateo
[28] Ravid, D., Internal structure constraints on new-word formation devices in modern Hebrew, Folia Linguistica, 24, 289-348 (1990)
[29] Schwartz, A.S., Hearst, M.A.: A simple algorithm for identifying abbreviation definitions in biomedical texts. In: Proceedings of the Pacific Symposium on Biocomputing, pp. 451-462 (2003) · Zbl 1255.68142
[30] Spiegel, Y.S.: The use of uncommon abbreviations and acronyms. Yeshurun. In Hebrew (2002)
[31] Stevenson, M., Guo, Y., Al Amri, A., Gaizauskas, R.: Disambiguation of biomedical abbreviations. In: Proceedings of the workshop on current trends in biomedical natural language processing, BioNLP ’09. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 71-79. http://dl.acm.org/citation.cfm?id=1572364.1572374 (2009)
[32] Tadmor, U., The acronym in Israeli Hebrew, Leshoneinu La’Am, 39, 225-257 (1988)
[33] Xu, J.; Huang, Y., Using SVM to extract acronyms from text, Soft Computing - A Fusion of Foundations, Methodologies and Applications, 11, 369-373 (2006)
[34] Yi, J., Sundaresan, N.: Mining the web for acronyms using the duality of patterns and relations. In: Proceedings of the 2nd international workshop on web information and data management, WIDM ’99, pp. 48-52. ACM, New York (1999). 10.1145/319759.319782
[35] Zahariev, M.: Efficient acronym-expansion matching for automatic acronym acquisition. In: Proceedings of the international conference on information and knowledge engineering, pp. 32-37 (2003)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.