×

Riemann summability of trigonometric series and Riemann derivatives of real functions. (English) Zbl 1447.42003

These considerations are a continuation of a series of results devoted to the interrelations between differentiation and summability. In this paper the authors establish relations between Riemann derivative and Riemann summability of any order. Other interesting results are also obtained.

MSC:

42A24 Summability and absolute summability of Fourier and trigonometric series
26A24 Differentiation (real functions of one variable): general theory, generalized derivatives, mean value theorems
PDF BibTeX XML Cite
Full Text: DOI Euclid

References:

[1] J. M. Ash,Generalized Riemann Derivative and associated summability methods,Real Anal. Exchange,11(1985-86), 10-29. · Zbl 0647.26006
[2] J. M. Ash,Generalized Differentiation and summability,Real Anal. Exchange,12(1986-87), 366-371. · Zbl 0647.26007
[3] J. M. Ash,Uniqueness of representation of trigonometric series,Amer. Math. Monthly,69(1979), 873-875. · Zbl 0724.42008
[4] P. L. Butzer and W. Kozakiewicz,On the Riemann derivatives of integrable functions,Can. J. Math.,6(1954), 572-581. · Zbl 0056.05604
[5] T. K. Dutta and S. N. Mukhopadhyay,On the Riemann derivative of CsP-integrable finctions,,Anal. Math.,15(1987), 159-174.
[6] G. H. Hardy,Divergent Series,Oxford, (1956). · Zbl 0032.05801
[7] G. H. Hardy and J. E. Littlewood,Abel’s theorem and its converse,Proc. London Math. Soc., 2(1920), 205-235. · JFM 47.0279.02
[8] G. H. Hardy and J. E. Littlewood,Abel’s theorem and its converse (II), Proc. London Math. Soc., 22(1924), 254-269. · JFM 49.0227.01
[9] H. Hirokawa,On the total regularity of Riemann summability,Proc. Japan Acad.,41No.8, (1965), 656-660 · Zbl 0141.06301
[10] H. Hirokawa,Riemann-Cesaro methods of summability,Tˆohoku Math. Jour.,6(1954), 155-161.
[11] R. D. James,Generalized n th primitive,Trans. Amer. Math. Soc.,76 (1954), 149-176. · Zbl 0055.05201
[12] K. Kanno,On the Riemann summability,Tˆohoku Math. J.,7(1955), 279-295
[13] B. Kuttner,The relation between Riemann and Cesaro summability,Proc. London Math. Soc.,38(1935), 273-283. · Zbl 0010.25801
[14] B. Kwee,On a conjecture on Riemann summability (R, k),Math. Proc. Camb. Phil. Soc.,104(1988), 277-281. · Zbl 0674.40007
[15] B. Kwee,The relation between Abel and Riemann summability,J. London Math. Soc.39, (1964), 5-11 · Zbl 0133.01301
[16] J. Marcinkiewicz,On Riemann’s two methods of summation,J. London Math.Soc.,10(1935), 268-272. · JFM 61.0215.01
[17] J. Marcinkiewicz,Sur les series de Fourier,Fund. Math.,27(1937), 38- 69. · JFM 62.0288.01
[18] J. Marcinkiewicz and A. Zygmund,On the differentiability of functions and summability of trigonometric series,Fund. Math.,26(1936), 1-43. · JFM 62.0287.01
[19] F. Moricz,The Lebesgue summability of trigonometric integrals,J. Math. Anal. Appl.390(2012) 188 -196. · Zbl 1250.42020
[20] S. N. Mukhopadhyay,On the regularity of thePnintegral and its application to trigonometric series,Pacific J. Math.,55(1974), 233-247. · Zbl 0294.26011
[21] S. N. Mukhopadhyay,Higher order derivatives,Chapman & Hall/CRC Monogr. and Surv. in Pure and Appl. Math.,144(2012). · Zbl 1247.26004
[22] S. N. Mukhopadhyay and S. Mitra,An extension of a theorem of Marcinkiewicz and Zygmund on differentiability,Fund. Math.,151 (1996), 21-38. · Zbl 0869.26002
[23] S. N. Mukhopadhyay and S. Mitra,An extension of a theorem of Ash on generalized differentiability,Real Anal. Exchange,24(1998-99), 351-371. · Zbl 0943.26018
[24] S. Radulescu, P. Alexandrescu and D. Alexandrescu,Generalized Riemann Derivative,Electron. J. Differ. Equ.,74(2013), 1-19. · Zbl 1292.26008
[25] B. N. Sahney,On the uniform Riemann summability,Boll. Unione. Mat. Ital. Sez. A Mat. Soc. Cult.,16(1961), 295-300 · Zbl 0188.12701
[26] O. Szasz,On Lebesgue Summability and its generalization to integrals, Amer. Jour. Math.,67(1945), 389-386. · Zbl 0060.15702
[27] S. Verblunsky,The relation between Riemanns Method of Summation and Cesaros,Math. Proc. Cambridge Philos. Soc.26(1930), 34-42. · JFM 56.0207.03
[28] S. Verblunsky,On the theory of trigonometric series II,Proc. London Math. Soc.,34(1932), 457-491. · Zbl 0006.25603
[29] S. Verblunsky,On the theory of trigonometric series V,Fund. Math.,21 (1933), 168-210. · Zbl 0008.31002
[30] S. Verblunsky,On the theory of trigonometric series VI,Proc. London Math. Soc.,38(1935), 284-326. · Zbl 0010.25701
[31] J. Vindas,On the relation between Lebesgue summability and some other summation methods,J. Math. Anal. Appl.,411(2014), 75-82. · Zbl 1321.40007
[32] F. Wolf,On Summable Trigonometric Series,Proc. London Math. Soc., 245 (1939), 328-356. · JFM 65.1203.03
[33] A.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.